
Efficient Data Retrieval from a Secure, Durable,
Append-Only Log ∗

Sam Kumar, Andrew M. Chen, Paul R. Bramsen, John D. Kubiatowicz
{samkumar, andrewmchen, paulbramsen, kubitron}@berkeley.edu

Electrical Engineering and Computer Sciences, UC Berkeley

ABSTRACT
The Global Data Plane (GDP) [1] provides a secure, verifi-
able, append-only, single-writer log interface where logs are
replicated across a range of possibly untrusted hosts. A ma-
jor advantage of such a log interface is that it is possible to
provide atomicity and consistent replication with little over-
head, while scaling at a global level. However, expressing
mutable objects in append-only logs, while simultaneously
providing efficient access to data within those objects, is a
nontrivial task. In this paper, we present the Global Data
Plane File System (GDPFS), a distributed filesystem that
expresses mutable files within append-only logs and provides
efficient data access within files. Because it is built on top
of the GDP, the GDPFS has the potential to scale very well
and run securely on untrusted hardware.

1. INTRODUCTION
The Global Data Plane (GDP) [1] provides a substrate for
storing data that can run securely on untrusted hardware.
The basic primitive that it exports to applications is a ver-
ifiable, append-only, single-writer log. With such a log in-
terface, it is possible to provide atomicity and consistent
replication with little overhead (where a log entry is the
basic atomic unit). Traditionally, systems that aim to pro-
vide rich data semantics first build the functionality that
they need, and then layer schemes to enforce such data se-
mantics on top of the functionality. Database Management
Systems are a good example of this. First the system imple-
ments its main functionality, namely allowing the creation
of relations and the retrieval of data from them. Then, to
achieve the desired data semantics, it may employ schemes
such as Write-Ahead Logging [6], Two-Phase Locking [7],
Key-Range Locking [5], etc. on top of the existing function-
ality in the system.

In contrast, the GDP provides a primitive, namely a single-
writer log, for which these desirable properties can be sup-
ported more easily than in a database. Because the logs
are append-only, replicas can be kept consistent without a
write-ahead logging scheme. Furthermore, it is easy to ver-
ify authenticity of the logs because each entry will have a
fixed signature at write time.

As data-collecting sensors become pervasive, the GDP is ob-

∗This paper was written at the University of California at
Berkeley as a CS 262A class project. For more info see
http://www.cs.berkeley.edu/ kubitron/courses/cs262a-
S16/index_projects.html

viously much more well-suited to storing their data than
a traditional DBMS, for the simple reason that a DBMS
must support much richer data semantics than are needed
for this task. Beyond being more efficient, the GDP enables
a new paradigm for building complex distributed data sys-
tems; rather than first building the system and then adding
locking or logging schemes to achieve the desired consistency
and durability properties, one may choose to build a system
on top of GDP, which can cheaply achieve these properties,
in such a way that some of these properties shine through
in the final system.

The main difficulty in this approach is one of the advantages
mentioned earlier: the append-only nature of logs in the
Global Data Plane. In addition to being well-suited for use
cases in which data is only added, and never removed, the
GDP is aimed more generally at providing secure data trans-
port for cloud services. One natural way the GDP could be
used to this end is as support for a log-based messaging
scheme. Apache Kafka [4], for example, is a publish-and-
subscribe messaging service based on a log. However, it is
also desirable to provide richer semantics such as data muta-
bility on top of the GDP. In particular, we wish to provide
the abstraction of a shared file that can be written by its
owner, and read by other entities1. The append-only nature
of logs in the GDP makes this a nontrivial task; while adding
new data to a file is easy, our goal is to record mutations to
data in an append-only log while simultaneously providing
a means to efficiently retrieve that data.

In this paper, we present the Global Data Plane File System
(GDPFS), a traditional distributed filesystem built on top
of the GDP log abstraction. Our motivation to do this is
twofold. First, we would like to open the atomicity and
security properties of the GDP to a wider variety of use
cases. Second, we would like to evaluate the effectiveness
of the GDP as a primitive for building complex distributed
systems, based on both the performance of the resulting
filesystem and our experience in creating it.

2. OVERVIEW OF THE GDPFS
As with most filesystems, the basic unit of storage in the
GDPFS is a file. All other filesystems constructs—such as
directories, symbolic links, etc.—can be built on top of ba-
sic files. Thus building a basic file which could be efficiently
read from and written to in a way that guaranteed desired

1The single-writer restriction stems from the fact that the
GDP provides a single-writer log as its main abstraction.

Figure 1: Basic layout of a GDPFS file

ACID semantics was our primary focus when building the
GDPFS. The design we settled upon is described in this sec-
tion. The implementation details of this design are described
in Section 3.

Each file in the GDPFS is backed by a single log in the GDP.
Files are modified by appending entries to the log specifying
a range of bytes and the new bytes that that range is to
take on. This means that new writes can eclipse old writes
simply by specifying an overlapping offset and size. Since
the GDP accepts appends to logs atomically, all writes to
files are guaranteed to be atomic.

Reads are satisfied by scanning the log backwards and re-
taining bytes that fall within the range of bytes being read
as they are seen. Note that it is essential that the log be
scanned backwards. The same logical byte may have been
written multiple times but we are interested in the most re-
cent version. See Figure 1 for a depiction of how this works.

While the previously described system is correct, it is not
efficient. Writes can be done in time constant in the number
of log entries and logical file size. Unfortunately, it may be
necessary for a read to examine every log entry (for example
when the read needs data that is in the first log entry) so
reads can take time proportional to the length of the log.
In order to solve this issue, we implemented a number of
caching and indexing strategies.

As a first step toward performance, we cache reads and
writes on the local filesystem. This gives us gains on reads,
in two ways. First and most importantly, if we have a cache
hit we can avoid going to the GDP at all, which completely
eliminates the need to hit the network even once. This
advantage is magnified if multiple network accesses would
have been necessary in order to locate and retrieve relevant
blocks. Second, we no longer spend CPU time reconstruct-
ing blocks based on log entries. We use a write-through
asynchronous policy, allowing readers to be kept up-to-date
without incurring the network latency on the writes. See
Section 3.2 for additional details.

If the bytes of interest are not in the cache, then clearly we
have to hit the GDP to retrieve the necessary data. This
once again brings up the problem of reads taking time linear
in the size of the log, which is not acceptable performance.
We solve this through use of a special tree index structure
called a FIG Tree, described in detail in section 3.3. A FIG
tree allows bytes to be found in time logarithmic in the size
of the file, much better than linear in the size of the log.

Figure 2: Overview of the GDPFS structure. Data flows
between vertical boundaries.

The FIG tree is updated on writes and periodically2 pushed
to the GDP in a special checkpoint log entry. Updating the
FIG tree adds a small cost to writes, no worse than logarith-
mic in the size of the file. Since we expect frequent access
of FIG tree indexes for files in active use, we keep an in-
memory partial representation, pulling in subtrees as they
are accessed. Furthermore we cache the checkpoint log en-
tries as they are read in since it is likely that related subtrees
will live in the same checkpoints. Figure 2 illustrates how
the system fits together.

3. IMPLEMENTATION
Since we only had about 2 months to build a working perfor-
mant prototype of the GDPFS, we had to carefully choose
tools to would speed development while incurring minimal
performance overhead (e.g. FUSE). This section describes
the process we went through in selecting these tools and
gives an in-depth explanation of the techniques we used to
achieve our performance goals.

3.1 FUSE
The implementation of the GDPFS is entirely built upon
the Filesystem in Userspace library (FUSE) [8]. This li-
brary enables programmers to implement entire filesystems
in userspace and works by redirecting all syscalls issued to
a FUSE mounted filesystem to a special user level process.

For example, when a user tries to open a file, the FUSE
library in kernel space will forward this syscall to the han-
dler running in our user level process. In this handler for

2Due to time constraints, our current implementation does
not checkpoint files periodically; rather it writes the check-
point entry when the in-memory representation of the file is
discarded.

open we first enforce the permissions on this file and then
tell FUSE to make all subsequent requests to this specific
file with a file handle that we specify. Finally, FUSE will
return the results of a successful open with a process spe-
cific file descriptor that is different than the file handle that
we have specified. Later, when that same process makes an-
other syscall with this file descriptor, the FUSE library will
recognize this (PID, FD) pair and call the correct user level
handler with the appropriate file handle which we specified
on the open. Upon returning from this user level handler,
the results of that syscall will be shuffled back into the kernel
and then finally to the process which issued that syscall.

We chose to build our filesystem on top of FUSE ultimately
because it allowed us to avoid writing any kernel level code.
This way it was much easier rapidly iterate on our filesystem
without worries of a bad line of code bricking our computer.
However, building a filesystem this way is not without its
limitations. For example, in FUSE each filesystem syscall
incurs an additional pair of user space to kernel space transi-
tions. This makes FUSE inherently slower than filesystems
built in the kernel. Also, because our FUSE-based imple-
mentation is running in userspace, it is impossible to directly
access the block-store. Instead, any sort of disk accesses we
make must go through a separate filesystem. Although our
current prototype of the GDPFS is built using FUSE due to
its ease of use, a more stable and permanent version would
foreseeably be written directly in the kernel.

3.2 File Caching Layer
Reads to files in the GDPFS first check a cache stored on
the local disk. The underlying implementation of this cache
is a file on the local filesystem which mirrors the logical view
of the file on the GDPFS.

The way the cache works is very simple. Each read first
checks to see if it can be satisfied by the file cache. If this is
not possible then we must go to the remote log to find out the
contents of this range. Upon reading from the remote log we
would populate the appropriate parts of the file cache. On
writes, we simply populate the appropriate portion of the
cache and issue an asynchronous write to the GDP before
returning. Because of this, all writes can return without
waiting for any network I/Os3.

An alternative caching scheme that we could have used to
locally store data in files is to treat the local disk as a general
cache for log entries read from the GDP. However, we be-
lieve that materializing files directly, as described above, is
strictly better for two reasons. First, storing the log entries
directly would also store stale data (i.e., data that has since
been overwritten), wasting space in the local disk. Second, it
let us use the local filesystem (ext4), which is well-optimized
for performance, to store parts of the same file close to each
other on disk.

3The correctness of this scheme depends on asynchronous
requests being processed in the same order that they are
made. For the current implementation of the GDP we be-
lieve this to be the case. If this changes, we could create a
bounded buffer of requests, and a worker thread that pro-
cesses them synchronously. Rather than making a request
to the log daemon asynchronously, we would just enqueue
the request into the buffer, achieving the desired semantics.

3.2.1 Sparse Caching
Because we only cache portions of a file that have been ac-
cessed, the cached version of a file may be incomplete and
have portions which are not valid.

Originally, each per-file cache was implemented through two
files on the local filesystem. One file would be responsible
for storing the actual contents of the file whereas the other
would be a bitmap which could be used to tell which bytes
in the cache were actually valid. The nth bit of the bitmap
and the nth byte of the locally cached file correspond to the
nth byte in the logical view of the file. Thus, reads to the
cache would first check the bitmap to make sure the cache
was valid and then would read that range of bytes in the
mirrored cache file. Because it is possible to write past the
end of the file in ext4 without actually allocating the blocks
for the empty regions, this method was an acceptable way for
us to create partially cached copies of GDPFS files without
paying the space for the entire file.

However, having a bitmap for every file adds a significant
amount overhead to the space of our cache. Specifically,
for every n cached bytes, we pay an additional

⌈
n
8

⌉
bytes

to keep track of the bitmap. To avoid this overhead, we
attempted to use a feature of modern filesystems intended
for use on sparse files. In addition to not allocating blocks
for holes created by writing past the end of the file, ext4
also keeps track of the positions of these holes internally.
For example, using the SEEK HOLE option with lseek will
move the file offset to the next hole greater than or equal to
the argument offset. Because of this functionality, finding
out if a range [a, b) in our cache is valid should theoretically
be reduced to checking if the result of lseek(a, SEEK HOLE)
is greater than or equal to b. However, the granularity to
which ext4 tracks these holes is at the blocksize level so holes
inside a partially filled in block will not be reported using
lseek(SEEK HOLE).

Throughout our testing, we have not yet run into any issues
with this bug since it is unusual for a process to write a part
of a block on a cold cache and then read a different part
of this block later. Because of time limitations, we have
decided to revert to keeping a bitmap for each file because
our performance is not bound by checking ranges on the
bitmap.

For future work, it may be desirable to combine the bitmap
and the SEEK HOLE functionality in order to proverbially
get the best of both worlds. For example, one simple way to
use both is to first check using SEEK HOLE if the block we
are reading is valid. If it is not, then we can entirely avoid
having to check that portion of the bitmap. Otherwise, we
must still check the bitmap since there may be portions of
this block that are invalid.

3.2.2 File Cache Coherency
One other aspect that we considered is the consistency of
our file cache. Because we the single-writer semantics of
the underlying GDP through to the GDPFS, we avoided
dealing with a majority of adversarial cases that would leave
our cache inconsistent. However, it is possible that a single
private key could be used on two separate hosts. In this
case, although there is one entity in the security sense of the

word, we must maintain a pair of consistent caches across
two separate hosts. One idea that we are considering for
future work is to create a service that provides the filesystem
to multiple users, and serializes the writes to the logs as
a single writer (because the GDP logs are single-writer).
Many of the same consistency issues we would see in such
a setting also arise in the case of a single writer mounting
the same GDPFS in multiple places and interacting with the
separate mounts concurrently. Therefore, we provide in this
section a discussion of some of the difficulties that arise in
such a case.

Suppose Alice and Bob both open a file, as writers, on the
GDPFS. Consider, as a simple case, the scenario where Al-
ice and Bob concurrently write different values to the same
range of byte in the file. To make the example concrete, con-
sider the case where Alice writes byte sequence A to the first
100 bytes of the file, and Bob writes the byte sequence B to
the first 100 bytes of the file. The standard way in which
the GDP allows one entity to be informed of new writes to
a log is via a subscription to the log. In the example, Alice
first writes A to her cache, and Bob first writes B to his
cache; meanwhile, they both asynchronously make requests
to the GDP log server. The log server will then choose some
serial ordering for these writes and append both entries to
the log; then, Alice and Bob will be informed of each other’s
writes via the subscription. Alice will write B to her cache,
and Bob will write A to his cache. After this is finished,
Alice will think that the first 100 bytes of the file contain
B, whereas Bob will think that the first 100 bytes of the
file contain A. In particular, either Alice’s cache or Bob’s
cache will be incorrect until he or she remounts his or her
filesystem.

One way to achieve consistency is to treat the order in which
updates are sent due to the subscription to a file as describ-
ing the ground-truth ordering of writes to the file. After
making an asynchronous request to append to a log, a client
receives first an application-layer ACK from the log server,
and then the same log entry in response to the client’s sub-
scription to the log. Upon receipt of the ACK, Alice would
check its record number to see if it is what she would expect
if she were the only writer; if it is what she expects, then
she can be sure that no writes happened in between. If the
record number is higher than expected, then Alice can con-
clude that a separate writer made a write to the file before
her write. Alice then must replay all writes starting from
the first write made by another writer when she receives the
datum from the subscription. Although this method main-
tains a strongly consistent view of the cache it has very poor
performance.

Another way to solve this problem is to use a weaker consis-
tency model in return for better performance. For example,
we could have that the file’s cache is only up to date when
the file is first opened as part of the semantics of our filesys-
tem. Implementing this would be as simple as maintaining a
separate cached version of each file for each process instead
of treating all processes open file as the same entity.

We currently do not support the case of having two sepa-
rate hosts writing to the same file since such a use case is
somewhat rare. However such a system could be built using

the methods discussed above.

3.2.3 In-Memory Caching
The GDPFS does not maintain an explicit in-memory cache
of file contents. The reason why we chose to forego any
caching layer in memory is that local filesystem’s buffer
cache will maintain an in-memory copy of commonly ac-
cessed parts of a file’s disk cache. Leveraging this fact al-
lowed us to not worry about the details of memory manage-
ment of cached files. However, we do maintain an in-memory
copy of part of the index because we felt that it is unlikely for
the buffer cache of the local filesystem to be well-optimized
for the read and write patterns required to maintain B Tree
structure (more details in Section 3.3).

3.3 Efficient Data Retrieval with a Cold Cache
3.3.1 Indexing Strategy

Although a file cache allows efficient access to recently read
data, or data written during the current session, reads are
still inefficient when the cache is cold. There are multiple
reasons why reads, in the case of a cold cache, ought to be
optimized. First, if a reader mounts the filesystem to read
a large file, it is unacceptable for the reader to have to read
through the entire log backing the file. Second, a writer
(represented by a single keypair) may mount the file system
from multiple computers, meaning that they may read a file
on a computer where the cache is out-of-date.

Our solution is to checkpoint files, by writing a log entry that
does not contain any new data, but rather is a tree that al-
lows efficient retrieval of data from the log. In particular, our
index solution guarantees that the log entry number at which
a byte is stored can be retrieved in O(logn) time, where n =
min {number of entries in the log, number of bytes in the file}.
For very large files, this tree could grow quite large. There-
fore, each checkpoint log entry contains either (1) the entire
tree, if the file has never been checkpointed before, or (2)
the diff of the tree from the previous checkpoint, containing
only new and modified nodes in the tree, referencing nodes
in previous checkpoints that are still in the current tree. In
that sense, the tree is copy-on-write; if one node is modified,
then all nodes in the path to the root need to be rewritten
in the next checkpoint.

An important advantage to only storing part of the check-
point in each log entry is that the entire checkpoint need not
be stored in memory for any given file. In particular, if only
part of a file is accessed, only the nodes relevant to that part
of the file may be stored by the client at all. The remaining
parts of the tree are loaded lazily as they are needed.

When a file is first opened, the client first reads the under-
lying log backwards until the first checkpoint log entry. The
tree nodes in that log entry are stored in memory as the in-
dex for that file. Then, the log entries after the checkpoint
entry are applied as diffs to the index, allowing the index
for the current version of the file to be materialized. Note
that the entire tree need not be stored by the client at this
time! In particular, nodes in the tree that were not written
in the last checkpoint, and which were not touched when
the later log entries were applied to the index, will not be
stored by the client, and will be loaded lazily by the client

as they are needed. Because reading the log backwards, and
applying the later log entries as diffs can be cumbersome
and time-consuming, our implementation makes the opti-
mization that every file is checkpointed before its in-memory
state is discarded. This means that as long as the client ter-
minates normally, the last entry in a file’s backing log will
be a checkpoint.

Because each checkpoint entry contains multiple nodes, it
makes sense to locally store checkpoint nodes in case they
are needed again, for a different node in the same checkpoint.
This may be quite common, because each checkpoint con-
tains an earlier snapshot of a subtree; if one node needs to be
loaded, its children are likely to be needed soon. Therefore,
we maintain an on-disk cache of recently read checkpoint log
entries. Note that we do not maintain such a cache for re-
cently read data log entries! If a log entry containing data
is read, all of the relevant data in that log entries is read
into the File Cache and will never be requested from the log
server again; therefore a log entry cache for data-containing
log entries would provide absolutely no benefit.

3.3.2 Possible Index Implementations
In this section we describe possible designs for an indexing
strategy that achieves the above properties. Then we explain
the design that we finally chose for our implementation.

One indexing scheme used by many file systems is that of
an inode. Files are split into fixed-size blocks (often the size
of a block on an underlying hard disk), and are stored in a
tree, where the data blocks are leaves. However, we decided
against such a scheme for two reasons. First, it requires all
writes to be block-aligned. In particular, a small write, of
just a few bytes, would require the entire block to be copied
as a new log entry so that it can be referenced as a leaf in
the inode tree. This adds a significant overhead in network
bandwidth for all readers, since the entire log entry must be
read, even though most of it is common with the previous
state of the file. We view the block-granularity of leaves
in an inode tree to be an artifact of block storage such as
disks, not an advantage in and of itself. The only possible
advantage to performing block-aligned writes is to decrease
fragmentation of file data; however, there are better ways to
achieve this4.

Furthermore, while an inode-based index guarantees loga-
rithmic time lookup in the size of the file, it does not take
advantage of cases where the log itself is much smaller. We
observed, when running compilation jobs on our filesystem,
that writes were often much bigger than the block granular-
ity of a disk. Although the log could be much larger than the
file it backs, so that in the worst case the indexing scheme
should scale with the size of the file, not the size of the log,
it is desirable for the indexing scheme to take advantage of
cases where the size of the log is actually small.

A vanilla B Tree, that maps a single byte index to a log
entry number is not a desirable index either. To write a
range of k bytes would require k insertions into the tree, one
for each byte in the range. Some file systems use a B Tree

4One such way would be to periodically defragment files; this
does not incur the overhead of reading and copying parts of
file on every write.

/∗ I n i t i a l i z e s a Fig Tree . ∗/
void f t i n i t (struct f i g t r e e ∗ t h i s) ;

/∗ Se t s the b y t e s in the range [START, END]
∗ to correspond to VALUE. ∗/

void
f t w r i t e (struct f i g t r e e ∗ th i s ,

by t e index t s ta r t ,
by t e index t end ,
f i g t r e e v a l u e t value ,
g d p f s l o g t ∗ l og) ;

/∗ Returns an i t e r a t o r to read over the
∗ s p e c i f i e d range o f b y t e s . ∗/

struct f i g t r e e i t e r ∗
f t r e a d (struct f i g t r e e ∗ th i s ,

by t e index t s ta r t ,
by t e index t end ,
g d p f s l o g t ∗ l og) ;

/∗ D e a l l o c a t e s the r e s o u r c e s f o r THIS . ∗/
void
f t d e a l l o c (struct f i g t r e e ∗ t h i s) ;

/∗ Fi le−Indexed Group (FIG) ∗/
struct f i g {

struct i n t e r v a l i r ange ;
f i g t r e e v a l u e t value ;

} ;

/∗ Gets the next FIG from the Fig Tree
∗ I t e r a t o r and p o p u l a t e s NEXT with t h a t
∗ r e s u l t . Returns t r u e i f t h e r e are
∗ a d d i t i o n a l FIGs in the i t e r a t o r . ∗/

bool
f t i n e x t (struct f i g t r e e i t e r ∗ th i s ,

struct f i g ∗ next ,
g d p f s l o g t ∗ l og) ;

/∗ D e a l l o c a t e s the s p e c i f i e d Fig Tree
∗ I t e r a t o r . ∗/

void f t i f r e e (struct f i g t r e e i t e r ∗ t h i s) ;

Figure 3: Interface to a FIG Tree.

with fixed-size blocks. OceanStore [9] uses such an indexing
scheme, with a block size of 8 KB. Although OceanStore
uses a B Tree rather than an inode, the fact that it uses
fixed-size blocks means that it has similar problems to those
discussed above.

A quick fix would be store in the B Tree one key-value map-
ping for each range, rather than one key-value mapping for
each byte. For each range that is written, an entry is added
to the B Tree mapping the first byte in the range to the
record containing data for that range. However, writing a
large range would still require the removal of all of the ranges
it overlaps with, which could be linearithmic (O(n logn)) in
the size of the range.

3.3.3 FIG Tree Index

In this section we explain the type of index we used in our
final implementation. We first introduce some terminology.
Each write by the client corresponds to one additional log
entry added to the log backing the file; we call this log en-
try a file group because it represents a group of bytes that
can be found by reading the same log entry. A file group
may partially overlap with previous file groups; the values of
these bytes in old entries are said to be stale. Abstractly, the
job of our index is to efficiently find, for any byte index, the
most recent file group containing that byte, avoiding stale
entries.

We call our data structure a File-Indexed Group (FIG) Tree.
The principle of a FIG Tree is to map ranges to records,
instead of individual bytes to records. When a range of
bytes (a file group) is written, an entry representing that
file group is added to the FIG Tree. An entry consists of a
range of bytes [a, b] mapped to an identifier of the immutable
record containing those bytes. A FIG Tree does not delete
the stale intermediate ranges contained within the range of
bytes written; instead it puts the entry describing the newly
written range higher in the tree so that any queries for bytes
in the range will find the new range entries first, and will
never find the stale mappings.

While simple in principle, this results in some edge cases
when reading and writing data, that are addressed below.

3.3.4 FIG Tree Query Algorithm
Querying a single byte is done in the same way as is done
in a B Tree. Starting at the root, we check if the queried
byte is in one of the entries at that node. If it is, the record
containing the byte has been found. Otherwise, we recurse
on the appropriate subtree.

This method can be extended to range queries; traverse the
subtree normally, making sure to avoid stale entries. This
can be done by keeping track of an interval containing the
bytes that are valid at each node. Initially, this range is
(−∞,+∞). When entering a subtree between entries con-
taining intervals [a, b] and [c, d], the interval gets restricted
to [b + 1, c − 1]. We backtrack up the tree either when we
have finished traversing a node, or when we reach the end
of the valid interval.

3.3.5 FIG Tree Insertion Algorithm
To do an insert, we begin by performing the Query Algo-
rithm, with the following modifications. We keep track of
the interval containing valid bytes at each node. At each
node, we prune the node by “trimming it” to the valid range:
this means removing all entries and subtrees that lie com-
pletely outside the range, and trimming entries that lie par-
tially within the range (if a subtree lies partially outside the
range, then we do not bother trimming it; we never have to
traverse any of a node’s subtrees in order to prune it). It is
important to prune each node as described above in order
to prevent stale entries from being pushed up the tree on
an insert. Furthermore, we stop early when we find a node
where at least one entry in the node overlaps with the range
that we are inserting. If we reach a leaf node without this
happening, then we just insert the new entry normally and
split and push up entries normally as in a B Tree.

If we stop at a node early, then the entries that overlap with
the range we are inserting are consecutive entries in that
node (since the entries in each node are in sorted order).
Let [x, y] → Z be the group that we are trying to write,
and let [a, b] → C, [d, e] → F , [g, h] → I, and [i, j] → K
be the entries that overlap with it. First, we replace all
four of the entries in the node with a single entry [x, y] →
Z, whose left subtree is the subtree that used to be to the
left of [a, b] → C, and whose right subtree is the subtree
that used to be to the right of [i, j] → K. The subtrees
between [a, b]→ C and [d, e]→ F , [d, e]→ F and [g, h]→ I,
and [g, h] → I and [i, j] → K, are completely deleted. If
x > a, then let the new group [a, x − 1] → C be the left
continuation. If x < j, then let the new group [y+1, j]→ K
be the right continuation. We then insert the left and right
continuations, if they exist, into the tree normally; these
insertions will be done at the leaves of the tree, and not at
some intermediate node (remember to use a and j, rather
than x − 1 and y + 1, to compute the valid intervals when
pruning the left and right subtrees of the newly inserted
group [x, y]→ Z).

See Figure 4 for concrete examples of the above rules.

3.4 Additional Optimizations
Besides materializing files on the local disk and checkpoint-
ing files with FIG tree indices, we perform additional opti-
mizations to improve performance of the GDPFS.

3.4.1 Precreation of Logs
One performance aspect that we quickly noticed when work-
ing on the filesystem is that file creation has high overhead.
This stems from the fact that reads from a file are gener-
ally fast due to caching, and that writes to the GDP can
be done asynchronously; in contrast, log creation must be
done synchronously and is a bottleneck for workloads that
create many files. Furthermore, logs cannot be created con-
currently in the current version of the GDP, exacerbating
this problem.

To alleviate this issue, we precreate logs ahead of time and
add them to a queue, so that files can be created without
having to wait for a synchronous remote procedure call to
the log server to return. We implemented this as a syn-
chronized bounded buffer, with a worker thread spawned
on initialization of the filesystem that creates new logs and
adds them to the bounded buffer whenever it is not empty.
Threads that create files remove an element from the bounded
buffer, or wait for the worker thread in case it is empty.

3.4.2 Second-Chance List for Files
One artifact of our file system is that opening a file for the
first time is an expensive operation that requires multiple
reads from the log server. In particular, it requires a syn-
chronous read of the most recent log entry, which becomes a
bottleneck when all reads are satisfied by the cache and all
writes are done asynchronously. Therefore, we would like to
mitigate this delay where possible.

One pattern that, on the surface, seems reasonable, is to
checkpoint a file and deallocate the in-memory state of a file
when all processes have closed it (it reaches a reference count

(a) A FIG Tree constructed by creating an empty file and then extending it with
11 writes of 50 bytes each.

(b) When a write of bytes 120 to 319 (inclusive) is performed,
it replaces all entries in the root node that it overlaps with.
The leftmost entry only partially overlaps with the range, so

bytes 100 to 119 form a left continuation that is inserted
separately into the tree.

(c) The final FIG tree, after bytes 120 to 319 are written.

(d) The final FIG tree after the additional write of bytes 340 to 369.
Observe that the leaf node is pruned to the valid interval when it is

written.

Figure 4: Example insertions into a FIG Tree.

of zero). However, we found that during compilation jobs,
it is common for a file to be opened and closed many times.
It is inefficient to deallocate a file when it is closed, only to
perform a synchronous remote procedure call to rebuild that
state when it is opened again.

Our solution to this problem was inspired by the demand
paging algorithm used by the VAX operating system. Be-
cause the VAX operating system did not have hardware sup-
port for detecting when pages are used, it maintained “hot”
pages in memory in a FIFO list and a second-chance list
in memory as an LRU list of pages marked “invalid” in the
page table. Pages that reach the end of the FIFO list of“hot”
pages are given a second chance in the LRU list before they
are paged out to disk; a page that is accessed very rapidly
will periodically enter the second-chance list before the“hot”
pages are in a FIFO list, but will never be paged out to disk
because it will be “revived” from the second-chance list on
the next access.

Similarly, rather than deallocating the in-memory file struc-
ture when its reference count hits zero (i.e., when it is closed
by all threads that opened it), we place the file on a second-
chance list and maintain its in-memory state. If the file
is opened soon after it is closed, then we no longer have
to make synchronous remote procedure calls to rebuild its
state, as we can simply “revive” it from the second-chance
list. To eventually reclaim resources, we stipulate that the
second-chance list has a maximum size, and deallocate the
in-memory state of a file when it reaches the end of the
second-chance list. While we were developing the filesystem,
we found that this optimization gave us a 100% speedup for
compilation jobs.

4. PERFORMANCE EVALUATION
Benchmark measurements were made on two hosts on the
same LAN. The log server was run on a set of 2 Intel(R)
Xeon(R) E5-2667 2.9GHz CPUs (6-Core, HT, 15MB Cache,

130W) with 64 GB (8 x 8GB DDR3-1600) of memory and
5 × 1 TB Seagate Constellation.2 (6Gb/s, 7.2K RPM, 64
MB Cache) 2.5” SATA drives in a RAID 6 configuration on
a MegaRAID SAS 9260-16i controller. The remote client of
the GDPFS was run on an Intel Core i7 processor, with 8
GB of memory and a 5400 RPM hard drive. The average
latency between the two hosts is about 5 ms. In order to
simulate running our file system in a Wide Area Network,
we also ran experiments where we used the Linux’s netem
(Network Emulation) utility to artificially inject latency into
our system. For these experiments, we added a latency of
10± 2 ms.

First, we discuss a macrobenchmark which tests our filesys-
tem as a complete system and then we dive into microbench-
marks on file creation, sequential read, and sequential write
performance. For each of our benchmarks, we compare
against NFS a popular distributed filesystem. The NFS
server is configured on the server with default settings and
also mounted with default settings.

4.1 Macrobenchmark: Redis
The macrobenchmark we ran was to compile a popular key
value store called Redis. There are three steps to this bench-
mark: copying the tar file to the file system, untaring the
archive, and finally making Redis. As a whole, we believe
that these three steps accurately mimic a large proportion
of use cases for our file system.

4.1.1 cp
In Figure 5b, we present the results for first copying the
compressed tar into both the GDPFS and NFS. We found
that in both the normal and the simulated WAN case, the
GDPFS copied the tar in faster. We suspect that the cause is
that the GDPFS returns from writes as soon as they hit the
local filesystem, pushing them to the GDP asynchronously,
whereas NFS may have to do some network I/Os to main-

(a) Time to compile Redis
in given filesystem. Results

averaged over 3 trials.

(b) Time to cp zipped
Redis tar into given
filesystem. Results

averaged over 3 trials.

(c) Time to unzip and
untar Redis in given
filesystem. Results

averaged over 3 trials.

(d) Time to make Redis in given
filesystem. Results averaged

over 3 trials.

Figure 5: Macrobenchmark results.

tain cache coherency. That said, this is not a fair compari-
son because NFS supports more general semantics than the
single-writer GDPFS. Because we assume a single writer, it
is easier for the GDPFS to maintain cache coherence.

4.1.2 tar
NFS significantly outperformed the GDPFS in the tar step.
This is because untarring requires creating many small files
and the GDPFS is particularly bad at file creation, primarily
for two primary reasons. First, since the GDPFS maintain
a global mapping of file handles to file structs, the GDPFS
must lock this structure when opening files. Thus when
a large number of files are created and opened, there is a
great deal of contention around the lock. Second, a bug in
the current GDP implementation prevents us from creating
logs concurrently so we are forced into synchronous creation
of logs and we need one for each new file. We attempted to
solve this problem by precreating a bounded buffer of logs,
but we found that due to lock contention on the buffer we

weren’t using up the precreated logs. For further discussion,
see Section 4.2.

4.1.3 make
Redis make times are comparable on NFS and the GDPFS
in the simple case. However, in the simulated WAN case, we
found that the GDPFS is significantly better than NFS. This
led us to suspect that NFS was making more network round
trips than the GDPFS, possibly to maintain a consistent
cache.

We also tested make times for the GDPFS with a cold local
cache. In this benchmark, the files were copied and untarred
as normal, but then the GDPFS had its cache cleared before
making. In all the other tests, reads and writes could be
satisfied by the local cache. This benchmark was run in
order to test the effectiveness of the FIG tree. The results
demonstrate that the FIG tree keep the times for make at an
acceptable level even with a cold cache. For more detailed
results, see Figure 5d.

4.1.4 Total Times
In total, we found that the time it takes to run all three
stages (cp, tar, and make) on the NFS is slightly faster than
on the GDPFS. However, when we added network latency
into the benchmark we found that the GDPFS was signifi-
cantly faster. This is due to the stricter single writer seman-
tics of the GDPFS.

In summary, this macrobenchmark concludes that it is plau-
sible to build a performant file system on top of append-only
logs if enough caching and indexing layers are put in.

4.2 Microbenchmarks
In order to get a more fine-grained view of the performance
of the GDPFS we also ran three tests each of which stressed
a main feature of file systems. These are: file creation, se-
quential writes, and sequential reads. These three tests were
done in the same client and server as the macrobenchmarks.
In addition, each of the tests also measures the performance
in face of additional simulated latency.

4.2.1 Creation Test
In the creation test, we created a sequence of 3000 files and
timed each call to the “open” function, which we used to
create files. We found that in both the normal and the
delayed case, the NFS was faster at creating files. Because
we are sequentially creating files in this microbenchmark, the
earlier discussion about the file table lock is not applicable.

We originally hypothesized that the explanation for this re-
sult was that we were running through the logs from our
buffer of precreated logs. However, when we measured the
size of our buffer we found that this was not the case. In
fact, in all cases the buffer was either full or one away from
being full. We suspect that this is because of lock contention
on the bounded buffer. In the presence of multiple threads
creating files (for example, in a compilation job), precreation
of logs would likely improve performance.

4.2.2 Write Test

Figure 6: Distribution of times to create a file over 3000
files.

Figure 7: Distribution of times to write 32 blocks (128
KiB) over 100 writes.

On each iteration of the write microbenchmark, we opened
a file, appended 128 KiB of data, and closed the file. This
process was repeated sequentially 100 times. We opened
and closed the file on each iteration was to ensure that the
filesystems were persisting the data and not just storing up-
dates in an in-memory buffer. The reason we chose this
chunk size is that FUSE prefetches reads in chunks of this
size, and we wanted to make sure that the prefetching did
not cause irregularities in our results.

Our results for this microbenchmark, which can be seen in
figure 7, reflect those seen in the cp macrobenchmark dis-
played in Figure 5b. As stated in the section on cp, we be-
lieve this phenomena to be a result of the GDPFS returning
from writes as soon as they hit the cache and then persisting
them to the GDP asynchronously. In contrast, NFS must
hit the network cache consistency before returning from a
write.

4.2.3 Read Test
In the read test, we unmounted and then remounted the
filesystem in which we ran the write test. We then sequen-
tially read the same 100 blocks from the file we wrote in the
previous microbenchmark ensuring that each read still had
the same data which was written.

In both cases, where we added network delay case and where
we did not, the NFS significantly outperformed our GDPFS.
There are two reasons for this. First, it seems that the NFS

Figure 8: Distribution of times to read 32 blocks (128 KiB)
over 100 reads.

may have cached all of the data for the file upon opening it
whereas the time to access the file is spread out across each
read in the GDPFS. Second, because the NFS is working on
top of a mutable backing store it is much easier for it to fetch
the appropriate bytes. In the case of the GDPFS, since we
had unmounted the file system earlier, each read had to be
satisfied by a tree traversal and GDP synchronous read.

5. RELATED WORK
Log based filesystems have been built before, most notably
the Log-Structured Filesystem (LFS) [11]. That said, we
differ from LFS in a number of key areas. First, we are
motivated to use logs because the GDP gives them to us
with network access, distributed durability, atomicity and
does this all with strong security guarantees over untrusted
hardware. LFS uses logs because they allow writes without
seeks. Second, every file in the GDPFS exists in its own log.
Third, we do absolutely no modification in place. Every-
thing is built around append only logs. LFS uses modify-
in-place semantics in several areas including the checkpoint
region. Fourth, we do away with traditional inodes and store
file metadata in the log entries for each file. This means that
a file in our system has no tie to the filesystem that it ex-
ists in and thus could theoretically be linked to in any other
GDPFS mount. It also means that each file in the filesystem
could potentially be owned by a different user5.

Looking at file systems in general, the Network File System
(NFS) [12] and the Andrew File System (AFS) [3], being dis-
tributed file systems, bear great resemblance to the GDPFS.
One of the most interesting contributions of AFS is its rel-
atively weak semantics for concurrent modification of the
same file. files are written back to the AFS server when
they are closed, and the last close wins. These weak seman-
tics are motivated by the observation that it is unlikely for
multiple users to concurrently modify the same file. This
same idea partially justifies the single-writer nature of files
in the GDPFS.

Because files are backed by logs, it is possible to “go back
in time” and restore an older version of a file. Our decision
to use a separate log for each file allows files to be sepa-
rately reverted to older versions. Some filesystems, such as

5We did not implement this functionality and thus will leave
it to future work.

the B-Tree Filesystem [10], use a Copy-on-Write strategy
to cheaply snapshot files. However, the semantics of these
snapshots are weaker than the versioning semantics achieved
with a log.

There are a few other similar filesystems such as TahoeFS
[13] and the Fast Secure Filesystem (FSFS) [2]. However,
they lack the copy on write and versioning advantages that
our system provides. The GDPFS is novel because it is built
solely on append-only logs, it gives strong atomicity guar-
antees, and can guarantee strong data integrity and confi-
dentiality while running on a network at global scale and
consisting solely of untrusted hardware.

6. FUTURE WORK & LESSONS LEARNED
Our goals in creating the GDPFS were (1) to make the GDP
accessible to more applications, and (2) to evaluate the GDP
as a useful primitive to create distributed systems.

We believe that we were fairly successful in achieving the
first goal. Given that we only had limited time, we were un-
able to create a bug-free filesystem that was fully featured
(with things such as hard links, symbolic links, etc.); how-
ever, we have made significant progress towards this end—
we have created a filesystem that is stable enough to run
compilation jobs of nontrivial systems. We believe that a
few more months of development could turn the GDPFS
into a usable file system. Many of the bugs hampering the
stability of our file system are in the GDP itself, so much so
that we feel that efforts should be taken to first make the
GDP stable, before attempting to make our filesystem built
on top of the GDP stable.

The second goal was to evaluate the usefulness of the GDP
itself. First of all, it must not be forgotten that the GDP is
itself a research project under active development. Further-
more, as far as we know our use case has put more stress on
the GDP than anything anyone has previously done. That
is, compared to other GDP applications we create more logs
more quickly, do more frequent and larger batches of asyn-
chronous reads and writes, and open and close a greater
number of logs at a greater rate. Given this new stress, it is
not a surprise that we found many new bugs. Much of our
GDP-related friction was because of these bugs, so an obvi-
ous first step in improving the GDP’s usefulness in building
complex systems like ours is to fix these issues. That said,
the fact that with a couple months of part time work we
were able to construct a distributed filesystem that, with a
few minor tweaks6, has the ability to securely operate over
untrusted hardware, speaks to the advantages of using the
GDP as a substrate for creating complex systems.

While the GDP enforces single writer semantics, there is no
inherent reason why this restriction must be elevated to the
level of the GDPFS. It would be interesting to figure out a
way to restructure our system such that this limitation was
removed. One could imagine a service, owned by a single
entity (keypair), that was the “single writer” of the filesys-
tem, that provides the filesystem as a service to multiple

6We didn’t quite implement all the security features in the
GDPFS due to time constraints however the foundation is
all there and we don’t expect any performance changes since
the GDPFS is by no means CPU bound.

logical writers. However, such a service would have to solve
the cache coherency problems with multiple writers men-
tioned earlier. Furthermore, it would have to be replicated
in order to be fault-tolerant, and, in order to scale at the
level of the backing GDP, it would need to be able to run
securely on untrusted hardware. In short, this system would
have to implement much of the functionality provided by the
GDP in such a way as to support multiple writers. Given
that it would have to implement this functionality on its
own anyway, we are unsure how it would benefit from using
the GDP. The problem here is the single-writer nature of
GDP logs. While it provides convenient security properties,
it is a shortcoming in that a multi-writer system needs to
re-implement much of the functionality of the GDP to scale
at that level.

The GDPFS could also be improved by implementing a sys-
tem for accessing earlier versions of files. It would also be
interesting to devise a key-sharing permission scheme to re-
strict which versions of a file are available to which readers.

7. CONCLUSIONS
In this paper, we have presented the GDPFS, which lifts the
single-writer, append-only log abstraction provided by the
Global Data Plane to a single-writer filesystem that is more
usable for many applications. We have found that using the
GDP enabled us to create a filesystem that—once the GDP
is bug-free and production-ready—scales extremely well and
runs on untrusted hardware. To our knowledge, no other dis-
tributed filesystem has been designed with these objectives
in mind. However, we identified the single-writer nature of
logs as a shortcoming of the GDP that prevents us from
easily generalizing our filesystem to work in a multi-writer
setting while still meeting the original objectives of extreme
scaling and running on untrusted hardware.

8. ACKNOWLEDGMENTS
We would like to thank the Global Data Plane Group within
the Ubiquitous Swarm Lab at UC Berkeley for providing di-
rection and support throughout the process of building the
GDPFS. We would also like to thank Eric Allman specif-
ically for aiding in the process of debugging and patching
the GDP C client library and GDP log daemon when we
ran into bugs that we could not work around.

9. REFERENCES
[1] E. Allman, K. Lutz, and N. Mor. The global data

plane prototype, February 2015. Poster presented at
the 2015 Berkeley EECS Annual Research Symposium
(BEARS).

[2] N. Cocchiaro. Fsfs: The fast secure file system.
http://fsfs.sourceforge.net/.

[3] J. H. Howard et al. An overview of the andrew file
system. Carnegie Mellon University, Information
Technology Center, 1988.

[4] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A
distributed messaging system for log processing.
NetDB, 2011.

[5] D. B. Lomet. Key range locking strategies for
improved concurrency. Morgan Kaufmann Publishers,
January 1993.

[6] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM
Transactions on Database Systems (TODS),
17(1):94–162, 1992.

[7] N. G. Philip A. Bernstein, Vassos Hadzilacos.
Concurrency Control and Recovery in Database
Systems. Microsoft Research, 1987.

[8] N. Rath. Fuse (filesystem in userspace).
https://github.com/libfuse/libfuse.

[9] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon,
B. Y. Zhao, and J. Kubiatowicz. Pond: The oceanstore
prototype. In FAST, volume 3, pages 1–14, 2003.

[10] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux
b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):9, 2013.

[11] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS),
10(1):26–52, 1992.

[12] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the sun
network filesystem. In Proceedings of the Summer
USENIX conference, pages 119–130, 1985.

[13] B. Warner, Z. Wilcox-O’Hearn, and R. Kinninmont.
Tahoe: A secure distributed filesystem.
https://tahoe-lafs.org/ warner/pycon-tahoe.html.

