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Abstract

Extending an Internet subnet by connecting 
resource-constrained nodes (e.g., embedded sen-
sors and actuators) over multiple wireless hops is 
necessary to support the future Internet of Things 
(IoT). RPL, the IPv6 routing standard for low-pow-
er and lossy networks, tried to achieve this goal 
but has not seen wide adoption in practice. As 
an alternative, Thread is a recently standardized 
low-power network protocol for IoT, driven by 
the Thread group, an industry consortium led by 
Google/Nest. We provide a comparative analysis 
of the technical aspects of RPL and Thread based 
on their specifications, explaining why using 
Thread, as opposed to RPL, may make sense for 
the future Internet. Specifically, the fundamen-
tal differences between RPL and Thread are their 
respective scopes and multihop network architec-
tures, which result in Thread’s unique design and 
advantages over RPL. Lastly, we evaluate Thread 
in an indoor multihop wireless testbed using 
OpenThread, an official open source implementa-
tion of Thread. This work serves as the first analy-
sis of the Thread protocol in academia.

Introduction
The scope of the Internet has continuously 
expanded. It is now common to form a subnet 
with smart things, such as wearables and speak-
ers; the Internet of Things (IoT) is happening. The 
current scope of IoT, however, is mostly about 
wirelessly connecting powerful devices, located 
near border routers (e.g., smartphones or WiFi 
access points). The natural next step for the future 
IoT is to extend the wireless subnet further, to 
include various embedded/battery-powered sen-
sors and actuators, flexibly deployed apart from a 
border router.

Enabling this vision requires an interdisciplinary 
effort between two regimes: low-power/lossy net-
works (LLNs, or wireless sensor networks, WSNs) 
and the Internet. This effort, which actually started 
more than a decade ago, has extended Internet 
connectivity to resource-constrained embedded 
devices by enabling IPv6 communication over 
IEEE 802.15.4 low-power wireless links in 2008 
(6LoWPAN) [1]. Going further, RPL, the IPv6 rout-
ing protocol for LLNs, was standardized in 2012 
[2]. RPL aims to build an IPv6 subnet of thousands 

of resource-constrained, battery-powered devices 
by connecting them over multiple wireless hops. 
Although RPL has received substantial attention 
and spawned numerous research works for the 
last six years, it has many unresolved issues that 
preclude its widespread adoption (except for Cis-
co’s Connected-Grid Mesh) [3, 4]. Still, practical 
IoT applications mostly use high-power/single-hop 
WiFi for “Things” or even replace Internet con-
nectivity with another low-power/single-hop wire-
less connectivity, such as Bluetooth Low Energy.

In contrast, when LLN first took off two 
decades ago [5], researchers expected to see 
practical/scalable multihop wireless systems soon. 
Building a reliable multihop network with unat-
tended, duty-cycling nodes, however, has been 
notoriously difficult. Low-power wireless network-
ing started to receive attention again with the 
megatrend of IoT, but industry still has a strong 
perception that multihop low-power wireless net-
works are unreliable and do not provide enough 
battery lifetime [6]. The only way to make a break-
through is to show practical evidence that it really 
works.

To this end, an industrial consortium, called 
the Thread Group, recently standardized Thread 
[7], a new IPv6-based low-power mesh network, 
with the following ideas:
1. Given that the Internet core is already glob-

ally scalable, building a low-power subnet 
with thousands of embedded devices is not 
only hard but also overkill.

2. In an embedded network, specifying multi-
ple layers together makes more sense than 
each layer being independent.
Therefore, unlike RPL, Thread specifies phys-

ical through network layers and targets modest 
scalability with hundreds of embedded devices. 
While relying on existing standards for other lay-
ers, Thread has its own routing protocol with 
a clear architectural restriction: a network par-
tition can have at most 32 routers, all of which 
must be always on (i.e., no radio duty cycling). 
Other nodes in the partition, called leaves, may 
be duty cycled, but are always one wireless hop 
away from an always-on router. This architectur-
al restriction decouples routing from low-pow-
er operation, enabling Thread to build a reliable 
mesh among routers and simultaneously provide 
low-power operation for battery-powered leaf 
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nodes. To avoid incompatibilities due to differing 
implementation choices, Google/Nest, a leading 
member of the Thread Group, has released an 
official open source implementation of Thread, 
called OpenThread.

With its open source implementation, focus 
on practical usage, and considerable driving force 
from industry, Thread is worth investigating and 
has the potential to be applied in practice. As a 
recent standard, however, its technical aspects 
have not yet been investigated in the research 
community. As a stepping stone, this article 
explores Thread’s routing aspects through a com-
parative analysis with RPL to demonstrate why it 
may make sense for the future IoT. We also dis-
cuss future steps to put the Internet in the Internet 
of Things. In doing so, our goal is not to conclude 
which protocol is better, but to introduce Thread 
as a new low-power IoT protocol that is interest-
ing enough to investigate for the future IoT.

The RPL Standard
This section presents a brief overview of RPL’s 
design goals and features.

Design Goal and Architecture

The RPL routing protocol was designed to accom-
plish three challenging goals together: scalability, 
reliability, and resource/energy efficiency. Spe-
cifically, it aims to construct an IPv6 subnet with 
thousands of resource-constrained nodes over 
multiple low-power wireless hops that simultane-
ously provides reliable data delivery and several 
years of battery lifetime. In addition, RPL focuses 
on being solely a routing protocol, without limit-
ing other node characteristics; any node can be a 
router and/or battery-powered (i.e., easy deploy-
ment). The high goal and the flexible architec-
ture, however, result in a strict requirement for 
protocol design: RPL routing should provide both 
reliability and energy efficiency for all of numer-
ous nodes in the case that they are all routers 
and battery-powered (the typical setting in WSN 
research).

Design Choices and Features

To satisfy the requirements, RPL made two 
important assumptions and design choices in light 
of prior work on WSNs [8].

Upward-Focused Routing: “Multipoint-to-point 
(MP2P) is a dominant traffic flow in many LLN 
applications.” — Internet Engineering Task Force 
(IETF) RFC 6550 [2]

The first assumption is that traffic in LLNs 
mostly goes upward, such as data gathering 
from embedded sensors through border routers. 
Therefore, while it provides bidirectional (both 
up/downward) routes, RPL focuses on reliable 
upward routes. To this end, it builds a quasi-for-
est routing topology, called destination-oriented 
directed acyclic graph (DODAG), rooted at a bor-
der router. Each node selects a parent node as 
the next hop of its upward route, based on the 
distance vector from the border router, while set-
ting the downward route simply as the reverse 
of the upward route. The distance vector-based 
path cost for the upward route, called RANK, is 
propagated by broadcasting DODAG Information 
Object (DIO) messages.

Data-Reactive Route Update: “Data traffic 

can be infrequent” and “Typical LLNs exhibit varia-
tions in physical connectivity that are transient and 
innocuous to traffic.” — IETF RFC 6550 [2]

With this assumption, making the control plane 
maintain a routing topology that is constantly up 
to date with the physical topology can waste ener-
gy. Therefore, RPL detects physical connectivity 
changes, which are supposed to be transient and 
infrequent, reactive to data transmissions while 
minimizing control packet transmissions (by using 
Trickle Timers [9]). Although the path cost design 
is decoupled from the RPL standard, the concept 
of data-traffic-reactive route update naturally ends 
up with the use of ETX (expected transmission 
count) as the path cost (RANK). ETX increases 
when more link layer retransmissions are required 
to deliver a data packet, indicating that the wire-
less link becomes unstable.

Additional Features and Not-Included 
Aspects: In addition to the above design choices, 
RPL includes the multi-instance feature to sup-
port heterogeneous traffic. Given that each RPL 
instance builds a separate routing topology with 
its own quality of service (QoS) and routing met-
ric, the multi-instance feature enables different 
traffic to go through different routes to reach the 
same destination. As a result, a routing table can 
have multiple entries for a single node depending 
on the number of instances the node joins.

However, as a routing protocol in the lay-
ered Internet architecture, RPL does not specify 
neighbor management (a list of directly reachable 
nodes) but instead relies on an external mecha-
nism (e.g., the IPv6 standard Neighbor Discovery, 
ND). RPL does not require anything for other net-
work layers.

Shortcomings of RPL
Since RPL first came on the scene six years ago, 
it has received significant attention and spawned 
numerous research papers. It has seen little adop-
tion, however, except for Cisco’s CGmesh. What’s 
wrong? We unveil the underlying reasons in light 
of the specification document and related work 
in the literature. For more details, we strongly rec-
ommend reading recent surveys of RPL, such as 
[3, 4].

The Flip Side of the Design Choices

First of all, the two fundamental design choices of 
RPL turn out to be inappropriate for real IoT use 
cases.

Upward-Focused Routing: Although upward 
traffic is dominant in LLNs, the need for down-
ward traffic delivery in IoT use cases is nontrivi-
al. Downward traffic is needed, for example, for 
actuation commands, firmware updates, acknowl-
edgment (ACK)-based transport layer protocols 
like TCP, and application-layer ACKs. In addition, 
some applications, such as electronic shelf label-
ing, generate more downward traffic than upward 
traffic [10].

However, the upward-focused design of RPL 
makes downward routing unreliable and unscal-
able [4]. Specifically, when physical wireless con-
nectivity changes, the downward route is very 
slowly updated, after upward data transmission 
failures (ETX increase), the upward route update, 
and a successful control message (Destination 
Advertisement Object, DAO) transmission toward 
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the new upward route. Meanwhile, many down-
ward data packets can be lost. Furthermore, 
RPL’s downward routing should select either of 
two modes of operation (MOP): storing mode 
(table-driven routing) or non-storing mode (source 
routing), which suffer from memory overhead or 
routing header overhead, respectively. The over-
head prevents RPL from constructing downward 
routes with thousands of resource-constrained 
nodes.

Data-Reactive Route Update: Although using 
data traffic for route updates significantly reduces 
control overhead, this incurs stability and reliabil-
ity problems. Note that data packets are not for 
assisting the network maintenance but mainly for 
delivering important information to a destination. 
When connectivity changes, however, RPL cannot 
detect it before a number of data packets are sac-
rificed, degrading reliability.

In addition, RPL’s representative routing met-
ric, ETX, has shown many problems when wireless 
link conditions become challenging. In contrast 
to the standard’s assumption, data traffic in LLNs 
is not necessarily infrequent. Some applications, 
such as structural monitoring and anemome-
try [11], do require frequent data reporting for 
meaningful analysis. In a large-scale network 
with thousands of nodes, nodes near the border 
routers should relay heavy traffic. Heavy traffic 
causes data packet loss due to congestion and 
hidden terminals. Wireless interference such as 
WiFi also causes nontrivial packet loss. In this 
case, RPL’s routing topology severely churns [12]. 
This is because RPL tries to change routes since 
ETX becomes bad, but changing routes does not 
resolve the wireless link problems caused by wire-
less interference and traffic load.

Although the above design choices have clear 
weaknesses, there have been no outstanding 
alternatives that provide scalability, reliability, and 
energy efficiency within a flexible network archi-
tecture where all nodes can be routers and bat-
tery-powered.

Simultaneous Complexity and Ambiguity

The key idea of having a protocol standard is that 
all implementations following the standard should 
be interoperable with each other and provide rea-
sonable performance. A standard should have 
fine-grained guidelines for all necessary features 
while excluding any redundant feature.

The RPL standard, however, has unnecessary 
features, such as a multi-instance/QoS metric 
(never investigated on embedded devices) and 
routing messages overlapping IPv6 ND features. 
This only increases implementation complexity 
and memory overhead without a clear benefit. 
A protocol for resource-constrained embedded 
devices should avoid such over-specified features.

 Simultaneously, RPL under-specifies many nec-
essary features. Specifically, although an embed-
ded network implementation should be vertically 
integrated, RPL has few guidelines for inter-layer 
operation. Although it makes sense that a routing 
standard excludes ND functionality, RPL unfor-
tunately does not have a complete suggestion 
for an external ND mechanism or interoperability 
with IPv6 ND.

The complexity and ambiguity of RPL result in 

various different implementations with different 
implementation choices and different features, 
degrading interoperability and performance.

Thread: A Multi-Layer Standard with 
Restricted Architecture

This section introduces Thread, an alternative to 
RPL as a low-power multihop IoT network proto-
col. Thread does not share RPL’s design goals and 
architecture. Rather, compared to RPL, Thread 
loosens the design goals and promotes a compro-
mise network architecture, as follows.

Energy Efficiency. “Routers are not designed 
to sleep” and “Sleepy end Devices (SEDs) are host 
devices. They communicate only through their par-
ent router and cannot forward messages for other 
devices.” — Thread 1.1.1 Specification [7]

Scalability. “It is designed specifically for Con-
nected Home applications,” “Home networks vary 
from several devices to hundreds of devices com-
municating seamlessly,” and “There can be a maxi-
mum of 32 Routers in a thread Network partition.”  
— Thread 1.1.1 Specification

Compared to RPL, the targeted subnet size 
is reduced from thousands to hundreds (includ-
ing leaf nodes), and there is a clear bound on the 
number of routers. The goal of modest scalability 
is not just a compromise, however, but avoids 
overkill for a subnet. In addition, routers should 
be powered enough to be always on; duty-cy-
cled (low-power) nodes are explicitly decoupled 
from routing and focus on energy efficiency. This 
allows routers to focus on the reliability aspect 
and battery-powered leaf nodes to focus on the 
low-power aspect. The “always-on router” restric-
tion is reasonable in indoor environments, which 
have abundant outlets, as well as outdoor settings 
with solar power, for example.

Furthermore, considering the nature of an 
embedded network as a vertical silo, Thread 
specifies multiple layers (physical to network); 
while proposing its own routing design, Thread 
also specifies other networking aspects, such as 
duty-cycling medium access control (MAC) (L2), 
addressing, and commissioning. This resolves both 
complexity and ambiguity problems. Specifically, 
Thread’s design choices are different from those 
of RPL, as shown in Table 1.

Routing Topology: Two-Tier, Asymmetric, Full Mesh

In contrast to RPL, Thread provides a two-tier 
routing topology considering the heterogeneous 
power capabilities of nodes.

The topology among routers is not a forest but 
a full mesh, given that the routers are always on. 
That is, each router has path cost (distance vec-
tor) not just to the border router but to all routers. 
Each router can reach any destination by selecting 
a next hop among multiple candidates by itself. 
In contrast to RPL, for which a downward route 
is passively determined by an upward route (as 
its reverse), Thread sets each path independently, 
which can cause a bidirectional route to be asym-
metric in various cases. In this way, Thread pro-
vides reliable routes not only for upward traffic, 
but also for any-to-any traffic.

In contrast, a battery-powered leaf node 
selects a single router as its parent and focuses 
only on maintaining connectivity with the parent. 
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Without any neighbor/routing information, its 
routing strategy is to simply rely on its parent: it 
sends/receives all packets to/from the parent. 
This design choice, decoupling battery-powered 
nodes from route management, can improve bat-
tery lifetime for leaf nodes by reducing control 
overhead.

Routing Packet: All-in-One

A Thread router broadcasts advertisement mes-
sages to update the routing metric at other nodes. 
In contrast to RPL’s DIO message containing 
only one path cost to the border router, Thread’s 
advertisement message has link costs and path 
costs to all 32 routers, which significantly restricts 
control packet overhead while forming a full 
mesh. Furthermore, given that the advertisement 
message provides link cost (not only path cost), 
the message supports both routing and neigh-
bor management; Thread tightly integrates routing 
with ND, in contrast to RPL, which focuses on 
routing. To contain all 32 entries in one packet, 
Thread represents bidirectional link cost, each 
of incoming and outgoing link costs with 2 bits 
and path costs with 4 bits, resulting in a 1-byte 
payload for each entry. In addition, Thread rec-
ognizes each entry’s address with its location in 
the advertisement message payload (i.e., address 
is its index), resulting in no additional space for 
addressing.

In contrast, a battery-powered leaf node does 
not send/receive advertisement messages, focus-
ing solely on low-power operation.

Route Update: Back to Control Plane

RPL uses Trickle [9] for DIO transmission to 
provide both minimal control overhead and fast 
route recovery, setting the steady-state interval 

between DIO transmissions to several minutes. 
Thread also uses Trickle to set the advertisement 
message interval. Given that routers in Thread 
are not low-power, however, it sets the interval 
to 32 s in steady state, much shorter than RPL. 
With such frequent advertisements, Thread can 
periodically refresh the entire mesh route relying 
on control packets rather than (infrequent) data 
transmissions. By using control packets to detect 
changes in physical connectivity, Thread is closer 
to classic routing than RPL.

Each (low-power) leaf node periodically wakes 
up and checks the reachability of its parent by 
sending data request (keepalive) messages.

Path Cost: Accumulated SNR
Although ETX, the inverse of packet reception 
ratio (PRR), is a very intuitive metric that can be 
obtained from data transmission experience with-
out any additional overhead, it is subject to the 
issues described earlier, and is additionally unre-
liable in LLNs. Given that PRR does not decrease 
linearly with received signal strength indicator 
(RSSI) but suddenly drops from > 90 percent to 
< 10 percent at a certain RSSI threshold (e.g., –87 
dBm) [13], ETX can finely distinguish link quality 
around that threshold. However, it cannot distin-
guish a very robust link from possibly fragile links. 
For example, when choosing an upward route, 
two candidate links may both have a current ETX 
of one 1 (the best quality), but one link may have 
an RSSI of –50 dBm and the other –80 dBm. 
Although the –80 dBm candidate link currently 
has good PRR, it is likely to become bad (below 
–87 dBm) in the future due to fluctuations in link 
quality. The –50 dBm candidate link is substantial-
ly more reliable, but the ETX information cannot 
tell the difference.

Table 1. Detailed comparison between RPL and Thread.

RPL [2] Thread [7]

Scalability Thousands of nodes Hundreds of nodes (up to 32 routers)

Radio duty cycling Out of scope Always-on routers, duty-cycling leaf nodes (listen-after-send)

Routing topology DODAG (quasi-forest) Two-tiered mesh

Upward route selection Direct Direct

Downward route selection Indirect (passive) Direct

Bidirectional route symmetry Symmetric Asymmetric

Link cost Out of scope (typically ETX) Quantized SNR

Link cost in a control packet Not included Both incoming/outgoing link costs, from/to each router (up to 32)

Path cost Out of scope (typically accumulated ETX) Accumulated quantized SNR

Path cost in a control packet Upward path only Path toward each router (up to 32)

Physical connectivity tracking Slow (> several minutes), mainly relying on the data plane Fast (< 1 minute), mainly relying on the control plane

Routing table Upward or all up/downward entries To any router, up to 32 entries

Multi-border router support Multiple DODAGs (one DODAG per border router) A single network partition including all border routers

Addressing Out of scope 16-bit address, encoding parent/child relationship

Neighbor discovery Out of scope As in the specification

Commission Out of scope As in the specification

Open implementation TinyRPL, ContikiRPL, RIOT-RPL (academia-driven) OpenThread (industry-driven)
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In contrast, Thread uses signal-to-noise ration 
(SNR) (link margin) for path cost one-way link 
quality and link cost. Given that SNR is well known 
to highly fluctuate, it is averaged and quantized 
for stability, as shown in Table 2. Thread takes 
the maximum of incoming/outgoing link cost to 
represent the cost of a bidirectional link, resolv-
ing link asymmetry. The path cost is the link cost 
accumulated along a route, increasing with hop 
count. This SNR metric-based routing provides 
robustness while possibly increasing hop count 
(forwarding overhead), for example, by selecting 
a –50 dBm node rather than a –80 dBm node, 
which is a reasonable trade-off since routers are 
free from energy constraints. Another advantage 
is that the routing topology can be stable even 
when the link layer suffers from data packet loss 
due to wireless congestion and/or interference.

A leaf node only holds the link cost for its 
parent, with no routing metric; it focuses on the 
direct link, not route length.

Next Hop Selection: Table- and Address-Driven

RPL provides non-storing and storing modes for 
next hop selection of downward traffic, both of 
which have scalability issues: packet and memory 
overhead, respectively.

In contrast, Thread uses the routing table to 
find a route only among routers, which bounds 
memory overhead to at most 32 entries. To pro-
vide a route to a leaf node, Thread uses both the 
routing table and an addressing technique. Given 
that a leaf node exchanges packets with others 
only through its parent router, the goal is to find a 
route from the source to the parent router. To this 
end, Thread encodes the parent router’s address 
in a leaf node’s address: among the 16-bit IEEE 
802.15.4 short address field, the first 6 bits are 
used for the parent router’s address and the other 
10 bits are used for a leaf node’s identifier. In this 
way, when a node is willing to send a packet to a 
leaf node, it extracts the parent router information 
from the leaf node’s address and finds a route 
toward the parent router based on the routing 
table.

Duty-Cycling: Listen-After-Send

As a multi-layer standard, Thread specifies a 
duty-cycling MAC: listen-after-send in the IEEE 
802.15.4 standard. Taking advantage of always-on 
routers, the duty-cycling protocol focuses on com-
munication between duty-cycled leaf nodes and 
always-on routers; there is no direct communica-
tion between leaf nodes. Unlike most duty-cycling 
protocols, which assume all nodes are duty-cy-
cled, Thread’s leaf node does not have to check if 
the parent router is awake, enabling simple oper-
ation. Specifically, when a leaf node has a packet 

to send to the parent, it simply wakes up, sends, 
and sleeps. Downstream packets destined to a 
leaf node are queued at that node’s parent. To 
receive packets, the leaf node periodically wakes 
up, sends a data request packet to its parent, and 
listens for a short interval. Upon receiving the data 
request packet, the parent node sends queued 
packets to the leaf node. This data request pack-
et is also used for checking connectivity with 
the parent. The duty-cycling mechanism enables 
control of leaf node energy consumption via the 
sleep interval [14].

Given that RPL can be combined with any 
link layer protocol, such as Time-Synchronized 
Channel Hopping (TSCH) in the IEEE 802.15.4e 
standard, it should be investigated whether the 
specific link-layer protocol of Thread is good 
enough in real environments.

Multiple Border Routers

In practical use cases, any node can fail for vari-
ous reasons; LLNs should avoid relying heavily on 
a single node. Therefore, even when a single bor-
der router can connect all nodes, deploying mul-
tiple border routers is necessary to avoid a single 
point of failure. Given that RPL’s DODAG is root-
ed at one border router, however, RPL needs to 
form multiple DODAGs to include multiple bor-
der routers. In addition, RPL allows a node to join 
only one DODAG (per instance), resulting in two 
disjoint DODAGs rather than a single topology 
fully utilizing all potential connectivity. Although 
the RPL standard allows multiple border routers 
to coordinate to form one DODAG with a single 
“virtual” root, it provides no specific guidelines 
to realize this feature, so no RPL implementation 
actually supports it.

Because Thread forms a full mesh instead of 
DODAGs, it can include all nodes and multiple 
border routers in a single routing topology. This 
significantly reduces the practical management 
burden.

Openthread: A Complete, Official, and 
Open Implementation of Thread

By design, Thread solves many problems in RPL. 
In LLNs, however, the devil has always been in 
the implementation details. In particular, RPL 
has suffered from incomplete implementations 
[4]. To address the issue, Google/Nest, a lead-
ing member of the Thread Group, has open-
sourced an official/complete implementation of 
Thread, called OpenThread (https://openthread.
io). OpenThread is a complete network imple-
mentation including all network layers. It has an 
event-driven kernel to run by itself, but can also 
be ported on an embedded operating system.

To evaluate OpenThread’s performance, we 
ported OpenThread on RIOT-OS, an open source 
embedded operating system, and used the Ham-
ilton embedded platform [15]. We first confirm 
energy consumption of leaf nodes in two cases: 
1. Periodic sensing and sending to the parent
2. Periodic reception from the parent, each 

with 10 s between packets and good link 
quality

In each case, a Hamilton device acting as a leaf 
node consumes 30 mA and 21 mA, respectively, 
resulting in lifetimes of 5.3 and 7.6 years, respec-

Table 2. Link margin conversion to one-way link 
quality in Thread.

Link margin (SNR) Link quality Link cost

> 20 dB 3 1

> 10 dB 2 2

> 2 dB 1 4

 2 dB 0 Infinite
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tively, with a 1400 mAh battery.
To evaluate routing, we constructed a multi-

hop testbed with 15 Hamiltons (including the bor-
der router) in an office (Fig. 1). Each Hamilton 
acts as a router and sends packets periodically 
to the border router using its IEEE 802.15.4 radio 
supporting a data rate of 250 kb/s. Figure 2 plots 
OpenThread performance according to the total 
input traffic load across all nodes. Figure 2a shows 
that OpenThread does experience more packet 
loss as traffic load increases. Figure 2b, however, 
shows that even with severe packet loss, Open-
Thread maintains the routing topology and does 
not intensify the problem. OpenThread provides 
the opportunity to systematically investigate many 
aspects of Thread, such as link/path cost, load 
balancing, commissioning, and timely propagation 
of network information.

What Else Is Missing?
Neither Thread nor RPL explicitly specifies the 
transport- or application-layer protocols used on 
top of IPv6. RPL, with its focus on upward routes, 
favors protocols that require a unidirectional flow 
of packets leaving the LLN, such as UDP-based 
protocols. In contrast, Thread provides good 
support for both upward and downward routes. 
Therefore, it has promise to support protocols 
with bidirectional packet flow. For example, TCP 
could be used to collect data from sensor read-
ings, with data packets sent in one direction and 
TCP ACKs in the other direction. Using TCP in 
LLNs is interesting because it would improve 
interoperability with the existing Internet services, 
which primarily use TCP/IP [11].

As a proof of concept, we ran TCP and UDP 
over OpenThread in the same testbed (Fig. 1) 
simultaneously for 40 hours. Nodes 11, 12, 13, 
and 14 generate a message every 10 s. Nodes 11 
and 14 send the reading over UDP, and nodes 12 
and 13 use TCP. Note that in our testbed envi-
ronment, human activities with various wireless 
devices during daytime incur significant wire-
less interference. Figure 3 depicts the reliability 
of each protocol for the duration of the experi-
ment, as the average of both nodes running each 
protocol (TCP or UDP). Our results demonstrate 
that whereas UDP does not provide reliable data 
transport, TCP increases reliability to nearly 100 
percent over multihop, lossy wireless links. TCP’s 
reliability drops to 50 percent briefly at Hour 35 
because Node 13 lost connectivity. This may have 
been due to a routing failure in OpenThread; the 
current OpenThread implementation does occa-
sionally experience disconnection in harsh wire-
less environments.

In addition, although Thread provides a fairly 
stable routing topology in the presence of link 
errors, it should also reduce these errors as a 
multi-layer standard. Given that wireless interfer-
ence, such as Bluetooth and WiFi, is significant, 
Thread’s link layer protocol should be more 
robust. Applying TSCH could be an option.

Conclusion
We introduce Thread, showing its potential to 
expand Internet connectivity to resource-con-
strained embedded devices over multiple wireless 
hops. We do so via a comparative analysis with 
RPL, the de facto IoT routing standard. Thread 

has significant driving force, with an active indus-
trial consortium of more than 100 members (the 
Thread Group), and with commercial Thread-en-
abled products on the market from companies 
such as Google/Nest and NXP. OpenThread 
opens the door for researchers to investigate and 
even improve Thread’s technical design. Although 
we have shown the potential of Thread, thorough 
experimental studies are needed to reveal its 
behavior and performance in detail. We ask the 
research community to actively participate in this 
exciting move toward the future IoT.

Importantly, the RPL “standard” is flexible 
(ambiguous at the same time) and leaves many 
things for “implementation” choices. Many spe-

Figure 1. Testbed topology with a snapshot of 5-hop upward routing paths 
chosen by OpenThread when using transmission power of –8 dBm. Nodes 
with the same hop count have the same color.
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Figure 2. Performance of OpenThread in the test-
bed as traffic load increases.
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Figure 3. Reliability of TCP and UDP over OpenThread for 40 hours.
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cific design choices of Thread, such as its two-tier 
architecture, control message-based route update, 
path cost, and multiple border routers, can possi-
bly be implemented in the context of RPL without 
violating its standard, although implementation 
complexity could be problematic. Investigation of 
Thread and OpenThread may uncover the best 
choices for a RPL implementation.
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