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ABSTRACT
Although TCP has widespread adoption in the Internet, wireless
sensor networks (WSNs) generally use simpler UDP-based proto-
cols. The few existing TCP implementations for sensor network
operating systems do not support all of the features of TCP. We
present a full-scale TCP implementation for sensor networks, called
TCPlp, based on the TCP protocol logic of the FreeBSD Operating
System. Our implementation demonstrates that full-scale TCP can
run within the resource constraints of a modernWSN platform, and
serves as a vehicle to explore the benefits of using a full TCP stack
in the WSN setting. We showcase TCPlp via three applications of
TCP: (1) reliable data collection in the context of an application, (2)
an interactive configuration/debug shell, and (3) a mote-based web
server.
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1 INTRODUCTION
Wireless sensor networks (WSNs) have evolved substantially over
the past two decades. Originally, researchers developed highly spe-
cialized networking solutions for WSNs, under the assumption that
“sensor networks have different enough requirements to at least
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warrant re-considering the overall structure of applications and
services” [2]. These solutions were generally driven by the strict
resource constraints of motes of that era, which had at most a few
kilobytes of data memory (RAM) [3, 4].

Since that time, WSN hardware has become more capable. With
the TelosB [7], motes became powerful enough to comfortably run a
full-fledged IP stack. Researchers observed that there is substantial
benefit to using IP in wireless sensor networks [5]. Since then, IPv6
and 6LoWPAN have become commonplace in WSNs. Operating
systems for WSNs, including TinyOS, Contiki, and RIOT, provide
implementations of these protocols. Recently, an industry consor-
tium has formed around 6LoWPAN-based IPv6 interoperability (the
Thread Group). The integration of IP into commercial offerings is
bringing forth the Internet of Things.

2 FULL-SCALE TCP
Despite the rise of IP, TCP is not well accepted by theWSN research
community. Many embedded network stacks (e.g., OpenThread)
do not even provide a TCP implementation. Those that do (e.g.,
Contiki’s uIP) provide a standards-compliant but highly simplified
implementation of TCP. This is not surprising, as the WSN research
community perceives TCP as too heavyweight for embedded WSN
hardware and a poor match to WSNs in general.

As part of our research, we refactor the fully-featured implemen-
tation of TCP in the FreeBSD Operating System to work within the
constraints of Hamilton [1, 6], a modern WSN platform. Our imple-
mentation, which we call TCPlp, establishes thatWSN hardware has
crossed a critical resource threshold, and that low-cost, low-power
embedded hardware is now capable of running complex network
protocols such as full-scale TCP. The feasibility of full-scale TCP on
WSN hardware motivates the following three research questions:

• Does the “completeness” of TCPlp—or, stated differently,
the presence of TCP features previously found only in tra-
ditional operating systems such as Windows, Linux, and
FreeBSD—bring value in WSNs? It is plausible that delayed
acknowledgments help reduce power consumption and that se-
lective acknowledgments help overcome high loss rates. The
robustness of full-scale TCP—in other words, the fact that the
FreeBSD implementation has received decades of testing and
tuning—could also be an asset to WSNs.

• How different are the underlying technical tradeoffs of
TCP from those of WSN-specific protocols? For example,
a TCP sender maintains a sliding window of unacknowledged
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Figure 1: Hamilton-based ultrasonic anemometer

data, whereas CoAP [8], a WSN-specific alternative to TCP, uses
a stop-and-wait policy. How consequential is this difference to
these protocols’ operation in WSNs?

• Towhat extent is the prevailing view that TCP is ill-suited
toWSNs actually valid?WhichWSN applications, if any, stand
to benefit from using TCP?How does TCP compare to otherWSN-
specific protocols currently in use? The presence of a full-scale
TCP implementation for WSNs allows us to perform experiments
to understand which applications may benefit from TCP.

We believe that TCPlp will be a useful vehicle for answering these
questions and others.

3 APPLICATION SCENARIO
Our demonstration explores the diverse set of WSN applications
that may benefit from full-scale TCP. One such application is the col-
lection of data from anemometers, sensors that measure air velocity
(Figure 1). Anemometers may be deployed in air ducts in a building
to diagnose problems with the Heating, Ventilation, and Cooling
System. Furthermore, they produce data at a high sample rate, and
each individual sample is quite large (12 measurements). Given its
high bandwidth requirements, we consider the anemometer a WSN
node that would benefit from full-scale TCP.

Other applications that may benefit from TCP are condition-
based maintenance (which could be done using, for example, ac-
celerometer data from a Hamilton mote) or acoustic detection. Even
“simple” WSN applications, such as low frequency environmental
monitoring, may benefit from full-scale TCP.

4 DEMONSTRATION
Our demonstration consists of three parts:
(1) One or more Hamilton devices transmit data to a server via a

border router. A display shows collected data in real time.
(2) One or more Hamilton devices run web servers, allowing a

participant to use a web browser to see recent sensor readings.
(3) One or more Hamilton devices run interactive shells, allow-

ing a participant to connect over TCP and run commands for
configuration or debugging.

Figure 2: Demonstration setup

The devices form a network using the OpenThread implementa-
tion of the Thread routing protocol. Participants may affect sensor
readings by interacting with the sensors and see the results in real
time. Participants may also connect to a web server hosted on a
Hamilton using a web browser, and connect to a shell running on a
Hamilton using the telnet command line utility.
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