
High-level Programming for Application Networks

Xiangfeng Zhu[w] Yuyao Wang[w] Banruo Liu[w]
∗

Yongtong Wu [w] † Nikola Bojanic[w]

Jingrong Chen[d] Gilbert Louis Bernstein[w] Arvind Krishnamurthy[w] Sam Kumar[w][l]

Ratul Mahajan[w] Danyang Zhuo[d]

[w]University of Washington [d]Duke University [l]UCLA

Abstract
Application networks facilitate RPC communication be-

tween the microservices of cloud applications. They are built
today using service meshes which employ low-level specifica-
tions and have high overhead—it is difficult to express even
simple application-specific functionality (e.g., access control
based on RPC fields) and RPC latency can more than double.
We develop AppNet, a framework for building expressive and
high-performance application networks. Developers specify
rich application network functions (ANFs) in a high-level
language with generalized match-action rules. We compile
the specifications to high-performance code after optimizing
where (e.g., client, server) and how (e.g., RPC library, proxy)
each function runs. The optimization uses symbolic abstrac-
tion and execution to judge if different runtime configurations
of possibly stateful functions are semantically equivalent for
arbitrary RPC streams. Our experiments show that AppNet
can express common ANFs in only 7-28 lines of code. Its
optimizations lower RPC processing latency by up to 82%.

1 Introduction
Modern cloud applications are composed of a collection of
microservices instead of monolithic binaries [10,50,56]. This
architecture speeds up software development because each
microservice can use the language and libraries best suited to
its task. It also improves scaling because each service can be
scaled (via replicas) independently.

However, when applications are disaggregated, many sim-
ple function calls become remote procedure calls (RPCs) over
the network. To secure and manage this communication, de-
velopers build application networks, also known as service
meshes, using chains of application network functions (ANFs)
that implement authentication, fault tolerance, logging, load
balancing, etc. Enabled by RPC traffic processing platforms
(e.g., Envoy proxy [19], RPC library plugins [18]) and by con-
trollers such as Istio [39], application networks are ubiquitous
today. Nearly all cloud application developers use them [7].

*Now with UIUC.
†Now with Peking University.

In theory, it should be easy to build performant application
networks that are specialized to application needs. After all, an
application network is meant to support known application(s)
and functionality, in contrast to the Internet which is meant to
support arbitrary applications. But the current reality is that
implementing even simple application-specific functionality,
such as access control or routing based on RPC fields, is
challenging [1, 70, 76], and application networks can increase
RPC latency as well as CPU usage by 2-7x [3, 5, 6, 66, 76, 86].

These shortcomings stem from the low-level programming
model of current application networks. Developers can ei-
ther write custom ANFs in general-purpose languages such
as C++ and Rust or use generic HTTP modules. Implement-
ing application-specific functionality is difficult either way.
Custom ANFs are difficult to write because high-level abstrac-
tions do not exist, and a separate ANF must be written for each
RPC processing platform. That is why HTTP modules, used
after wrapping RPC traffic in HTTP, are more popular. But us-
ing them requires modifying the microservice code to expose
relevant RPC information as HTTP headers [25, 70, 76]. Such
modifications are onerous, especially when the microservice
code is authored by third parties (a common case).

Low-level programming of application networks also hurts
performance. There are different locations, including the
client, the server, or another remote host [13], and different
platforms where ANFs can be run. Different options offer dif-
ferent trade-offs [70, 76]—e.g., RPC libraries have low over-
head but cannot be used with untrusted microservice code;
and rate limiting total requests to a microservice is better
done at the server-side to eliminate the coordination overhead
among clients. Today, developers must explicitly configure the
order, location, and platform for each ANF. However, it is dif-
ficult to manually determine high-performance configurations
because performance depends on the interactions between
various ANFs and on the (dynamically varying) number of
client and server replicas. Since the semantics of ANFs are
unknown to current network controllers, they must execute ex-
actly what the user provides, even if semantically-equivalent
configurations with significantly better performance exist.

1

Our goal is to enable expressive, easy-to-build, and high-
performance application networks. We explore an approach
based on high-level programming, inspired by works that
achieve a similar goal for layer-3/4 networks [43,44,65,68,80]
and switch forwarding [46, 47, 54, 74]. We develop AppNet, a
framework for building application networks which has (1) a
high-level language to specify ANFs, (2) a compiler that gen-
erates an optimized configuration across multiple platforms,
and (3) a controller that instantiates the configuration.

With AppNet, developers specify network functionality as
a chain of elements, where each element expresses some type
of RPC processing (e.g., load balancing). Our language offers
a generalized match-action primitive where matches can be
performed on RPC fields, state, or results of built-in functions
(e.g., random) and actions can be reading or writing RPC
fields and state. This primitive is expressive enough for RPC
processing (unlike others we tried, such as SQL dataflow [9])
and yet can be compiled to high-performance code for multi-
ple platforms. AppNet also provides primitives for managing
shared state between multiple instances of the same element
and shared state with the control plane. These primitives make
it trivial to express functionality such as global rate limiting
that may require coordination across element instances.

Based on element specifications, the AppNet compiler out-
puts runnable modules for various platforms. The mapping
between elements and runnable modules is not one-to-one
and is optimized for performance. A module may contain
multiple elements to reduce overhead, the element order may
be altered (e.g., moving elements that drop RPCs upstream
reduces work for downstream elements), elements may be
migrated based on state synchronization costs, or elements
may be co-located in selected locations to completely bypass
the (expensive) invocation of some platforms.

It is critical that the output of the compiler be semantically
equivalent to the user’s specification. Determining equiva-
lence is challenging because elements are stateful (thus, pro-
cessing an RPC impacts subsequent RPCs) and RPCs can be
dropped or reordered (which can impact downstream state).
AppNet uses a form of symbolic abstraction and symbolic
execution [59] to determine when two chains of elements,
each a possible runtime configuration, are equivalent for arbi-
trary streams of RPCs. It abstracts each element as symbolic
transfer functions that capture its side effects (e.g., RPC field
modifications and state updates). It then uses symbolic execu-
tion over these functions to compute the processing semantics
of a chain, including changes to the element state and auxil-
iary outputs such as logs. The outputs of this execution help
determine whether two chains are equivalent.

As part of its compilation, AppNet allows users to opt for
weak consistency and improve performance. It can weaken
consistency in two ways: state consistency, which controls
the consistency of shared state among element instances, and
observation consistency, which controls whether auxiliary
outputs such as logs record the same information. Weak con-

Frontend

Search

Geo

Rate

Profile

User

Reserve

Recommend

MongoDB

Memcached

MongoDB

MongoDB

Memcached

MongoDB

Memcached

MongoDB

MongoDB

Figure 1: Hotel Reservation application’s microservices [53].

sistency may not always be appropriate, but applications that
can tolerate them can experience higher performance. Such
modulation of network behavior based on application charac-
teristics is a unique opportunity for application networks.

Our current implementation of AppNet [16] supports three
popular RPC processing platforms: EnvoyNative [31], Envoy-
Wasm [40] (respectively, C++ and WebAssembly-based exe-
cution environments in Envoy), and gRPC interceptors [29].
The Envoy platforms support deployment as a proxy located
with the client or server ("sidecar") or as a remote proxy.

We evaluate AppNet by implementing 14 ANFs and study-
ing a range of chain specifications. We find that 12 common
ANFs need only 7–28 lines of code, and 2 more complex
ANFs which integrate load balancing and routing—Meta’s
ServiceRouter [70] and Google’s Prequal [82]—need only 62
and 88 lines. AppNet’s compiler optimizations lower RPC
processing latency by up to 82% and CPU usage by up to
75%, compared to unoptimized chain configurations.

Our results show that it is possible to build application net-
works that are both expressive and performant. Decoupling
network specification from the running implementation opens
up new capabilities too. One such capability, which AppNet
already supports, is consistently upgrading the network when
specifications change or microservices scale. The upgrade
ensures that no RPC ever experiences a mix of old and new
network policies, which can lead to performance anomalies
and policy violations [4, 69]. We are exploring others, includ-
ing offloading RPC processing to kernel or hardware and
serializing RPCs based on fields accessed in the network.

2 Background
Microservices are the dominant paradigm for modern cloud
applications. Figure 1 shows a typical microservices-based
application. Intended to enable hotel reservations, its func-
tionality is split across eight types of microservices. Clients
contact (a replica of) the Frontend service, which then commu-
nicates with a middle-tier service depending on the query. The
middle-tier services handle tasks such as searching for hotels,
completing hotel bookings, updating user profiles, and provid-

2

Function Description
Fault Injection [23] Randomly drop an RPC
Cache [22] Generic cache for RPC responses
Rate Limiting [24] Control the rate of RPC requests
Load Balancing [26] Load balance across service replicas
Logging [20] Record the RPC content to disk
Mutation [30] Modify the RPC content

Application Firewall [15] Rejects an RPC based on pattern
matching

Metrics [28] Monitor the RPC latency and success
rate

Admission Control [45] Drop RPC requests based on success
rates

Encryption [12] Encrypt certain RPC fields
Bandwidth Limit [21] Control the amount of data to the ser-

vice

Circuit Breaking [32] Limit the impact of undesirable net-
work peculiarities

Table 1: Common ANFs for microservices.

ing recommendations. They may contact other microservices
and storage infrastructure. Production settings can have any-
where from 1 to 100s of replicas of each microservice [10,56],
communicating via remote procedure calls (RPCs).

To manage communication between microservices, de-
velopers build application networks with rich functional-
ity. Table 1 lists 12 common ANFs which we identified
by surveying popular platforms to build application net-
works [11, 14, 30, 31, 39].

As Figure 2 shows, ANFs can be run in different locations
and using different platforms. Common platforms include:
(1) RPC library [18, 70], which is embedded directly into the
client or server microservice’s code to manage communica-
tion without external proxies, (2) sidecar [19, 35], a proxy
co-located with the client and server that intercepts all traffic,
and (3) remote proxy [13, 76], a standalone proxy that han-
dles traffic between services. Simple RPC processing may
be located in the kernel (using eBPF) as well [17]. We will
extend our work to this platform in the future.

ANFs are implemented in a platform-specific manner,
and developers typically invoke them via service mesh con-
trollers [35, 39]. The controllers configure the target platform
and also configure RPC traffic interception and redirection.
Regardless of whether ANFs run inside an RPC library, a
proxy, or both, developers must manually decide their execu-
tion order, platform, and placement.

This decision is complex and significantly impacts perfor-
mance. As an example, consider the communication between
two replicas of Search and one of Geo (Figure 3). The devel-
oper wants to run Logging, Load Balancing, Rate Limiting,
and Application Firewall ANFs from Table 1 between the
microservices. Rate Limiting uses a stateful token bucket to
control the RPC request rate to a Geo replica. Figure 3a shows
a possible configuration provided by the developer.

However, factoring in the properties of the platforms and
ANFs’ semantics, configurations with better performance ex-

Sidecar
Search

OS

RPC Library

Remote Proxy

Geo

OS

RPC LibrarySidecar

Figure 2: RPC processing between Search (client) and Geo
microservices. Dark blue rectangles are ANFs.

SidecarSearch 1

Sidecar

Library
Log

Search 2

Library

LB RL Sidecar Geo 1

Library
FW

Log LB RL

(a) User-provided configuration

Sidecar

Sidecar

Sidecar

Search 1

Library
Log

Search 2

Library

LB Geo 1

Library

Log LB

FWRL

SidecarSearch 1

Sidecar

Library
Log

Search 2

Library

LB RL Sidecar Geo 1

Library
FW

Log LB RL

(b) Optimized, semantic-preserving configuration

Figure 3: Two possible configurations for an application net-
work. ‘Log’ is Logging, ‘LB’ is Load Balancing, ‘FW’ is
Application Firewall, and ‘RL’ is Rate Limiting (stateful).

ist. We could move Rate Limiting to the server side, which
eliminates the need for synchronizing state between multiple
ANF instances because the state depends on server replica,
and we could move Logging to the RPC library because that
platform has lower overhead. Figure 3b shows an optimized
configuration for the chain.

Not all performance-enhancing configurations preserve the
semantics of the input chain. Identifying optimized configura-
tions that preserve semantics requires careful reasoning about
semantics and state dependencies. For example, reordering
Application Firewall and Rate Limiting and moving the Ap-
plication Firewall to the client side can improve performance
by preventing RPCs that would eventually be dropped from
traversing the network. Yet, this reordering would violate the
input semantics, as Rate Limiting’s internal state could be
affected depending on whether Application Firewall drops a
packet before or after it.

The current architecture of application networks—with
low-level, platform-specific ANFs whose ordering, location,
and platform are manually determined—has evolved organ-
ically, and it has the limitations mentioned earlier: difficult-
to-express application-specific functionality and poor perfor-
mance. We ask what a principled design for a framework

3

to build application networks might look like and if it can
effectively address these limitations.

3 AppNet Overview
AppNet provides high-level programming abstractions for
application networks. The abstractions simplify the specifica-
tion of desired network functionality and enable optimizations
that help realize the functionality with low overhead. This
section overviews the abstractions, the optimizing compiler,
and the runtime controller.

3.1 Programming abstractions
Like high-level languages for layer-3/4 networks [43], the
AppNet language focuses on the data plane, which has com-
plex, performance-sensitive processing. Some ANFs have a
control plane as well. For load balancing, the data plane for-
wards the RPCs to different replicas, and the control plane
maintains the list of active replicas. AppNet provides shared
state abstractions that enable the control plane to communi-
cate easily with the data plane, but it does not provide high-
level abstractions for control plane logic.

With AppNet, users specify network functionality between
a pair of microservices using chains of elements, where each
element encodes an ANF. Key aspects of the specification
language are:

Generalized match-action rules RPC processing is speci-
fied as match-action rules that operate over RPC fields (not
arbitrary low-level code for standard protocols), state, and
built-in functions. RPC fields (both metadata and payload)
are represented as key-value pairs, which the elements can
easily read/write without worrying about (de)serialization.
The state is also represented as key-value pairs.

Match-action rules are natural for RPC processing, and they
give the compiler visibility into which RPC fields are accessed
and what the state depends on. At first glance, the match-
action paradigm may seem limiting for layer-7 processing,
but we have found it to be rich enough to encode a wide range
of ANFs. This encoding is made possible by allowing richer
match expressions and actions than switch languages like
P4 [46]. Match expressions go beyond static table lookups
and can use a suite of operators and built-in functions, and
actions can read/write state multiple times.

Shared-state management Shared state, between multiple
instances of the same ANF (e.g., for global rate limiting)
or between control and data planes, is common in applica-
tion networks. Developers manage this state manually today,
which is onerous. AppNet abstracts away this state manage-
ment and provides APIs to read-write state. This abstraction
lets us reduce synchronization costs by placing elements and
state based on what the state depends on. If the state depends
on server replica, we prefer placing the element on the server
side so there will be only one reader-writer to this shard of
the state; and if we can do that, we can locate the shard on the

server as well. Shared state management also lets us trade off
consistency and performance, as we discuss next.

Performance-consistency tradeoff AppNet lets users trade
consistency for performance in two ways. First, they can
opt for weak (eventual) consistency for shared state. This
trade-off is well-known for distributed systems [49,85]. Users
can also specify weak observation consistency. Two network
configurations have strong observation consistency when all
outputs—the microservices themselves and auxiliary outputs
like logs—get the same content in both configurations. Weak
observation consistency permits the auxiliary output channels,
but not microservices, to get different content, e.g., logs will
differ when logging occurs before versus after an ANF that
modifies the RPC’s geo-region field. Applications that can
tolerate weak observation consistency can get higher perfor-
mance because it creates more optimization opportunities.

Location & platform agnostic elements, paired elements
AppNet does not require users to specify an element’s location
or platform explicitly (though they can pin if they want). This
under-specification enables the compiler to determine the
location and platform based on performance. Thus, while
AppNet uses element chains as a specification primitive like
application networks today, a key difference is that AppNet
chains specify processing semantics, not execution order.

AppNet also lets users define pairs of elements that must
be used in concert (e.g., compression/decompression). For
paired elements, AppNet ensures that one element is allocated
to the client side and the other to the server side, and conflict-
ing elements are not placed between them. This primitive
simplifies specification and prevents errors such as forgetting
the decompression element or placing compression between
encryption and decryption [1].

3.2 Compiler
The AppNet compiler takes in the network specifications and
RPC definitions (e.g., Protobuf [37]) used by the application
code. Using RPC definitions during compilation frees the
developer from having to write RPC (de-)serialization code,
helps validate the specifications (e.g., RPC field names), and
ensures that the generated code is up-to-date with RPC defi-
nitions. After parsing and sanity-checking the specifications,
the compiler tags each state variable with what it depends
on (e.g., client-replica, server-replica, global, etc.) based on
what the state is indexed on. This information is used for
optimizing element and state placement.

The compiler outputs modules that can run on one or more
platforms (e.g., RPC library, sidecar). The heart of this pro-
cess is computing a performant runtime configuration that is
semantically equivalent to the user input. In the output con-
figuration, elements may be reordered and combined into one
module. The challenge in this computation is that elements
can be stateful, which means that we must analyze equiv-
alence for arbitrary streams of RPCs, not individual RPCs;

4

state updates caused by an RPC impact all subsequent RPCs.
The analysis must also account for RPCs getting dropped
or reordered—a stateful element that is upstream of a rate
limiter, which drops RPCs, will see a different RPC stream
than when it is moved downstream, leading to different state
updates. Statefulness and the possibility of dropped/reordered
streams make it hard for us to reuse equivalence analysis de-
veloped in domains such as stateless packet forwarding [43]
or instruction reordering [77].

AppNet solves this challenge by first symbolically abstract-
ing elements. The abstraction captures all of an element’s
side-effects and dependencies using transfer functions, with-
out capturing the exact processing logic. For the rate limiter,
it will capture that it may drop an RPC, that its internal state
is updated when an RPC appears, and that this update does
not depend on the RPC content. AppNet then uses symbolic
execution over chains of element-level transfer functions to
determine end-to-end transfer functions of a chain, including
output RPCs, state updates, and what is sent to auxiliary out-
puts such as logs. Two chains are deemed equivalent if their
end-to-end transfer functions are equivalent.

3.3 Controller
The AppNet controller maintains an up-to-date, global view
of all service replica locations by integrating with cluster man-
agers such as Kubernetes [33]. It orchestrates the deployment
of runnable modules generated by the compiler, ensuring they
are deployed to the appropriate replicas and platforms. It also
ensures that configuration updates are consistent.

4 AppNet design
We now describe the AppNet language and compiler in detail.
Appendix A describes code generation and consistent updates.

4.1 Specification language
Figure 4 shows the core of the AppNet grammar, without
type annotations and syntactic features that enhance usability.
Figure 5 show an example specification. At the highest level,
RPC processing between two microservices is described using
four sub-chains of elements: two for those that must run on
the client or server sides, one for those that can run anywhere,
and one for paired elements (e.g., encrypt/decrypt). For paired
elements, the first element is run on the client side and the
second on the server side. It is not mandatory to have an
element in any of these sub-chains. Users can include all
elements in the "any" sub-chain. The implied processing order
for elements is client, pair(client), any, pair(server), server;
the compiler may re-order the elements, but it will preserve
this semantics. Users can optionally specify weak observation
consistency. Figure 5a shows the AppNet chain specification
for the example in Figure 3, where only the "client" and "any"
chain are specified.

An AppNet element specification has four sections. The
state section declares variables that hold local or shared state

Chain ::=

client: Element∗

any: Element∗

server: Element∗

pair: (Element,Element)∗

[weak]

Element ::=

state: Decl∗

init(Var∗): Assign∗

req(Var): Action∗ [MatchAction]
resp(Var): Action∗ [MatchAction]

Decl ::=Var [shared [weak [sum]]]

MatchAction ::= match(Expr) Case+ ['*' => Action+]

Case ::= Literal => Action+

Action ::= Assign | Send | Foreach | Return

Assign ::=Var = Expr | set(Var,Expr+,Expr)

Send ::= send(Message,Channel)

Foreach ::= foreach(Var,LambdaFunc)

Return ::= return [Expr]

Message ::=Var | 'error'
Channel ::= down | up |Var

Expr ::= Literal |Var | get(Var,Expr+[,LambdaFunc])

| BuiltinFunc(Expr∗)

LambdaFunc ::= lambda(Var+) => Action∗ [MatchAction]

Var ∈ (set of variable names)

Literal ∈ (literal values, e.g. 0.1,42, true)

Figure 4: AppNet specification language.

among all running instances of the element (serving different
microservice replicas). Shared state declarations optionally
accompany desired consistency and aggregation methods. By
default, all reads and writes to shared state are synchronous.
If users specify weak consistency, AppNet maintains a local
copy and syncs this copy in the background (thus providing
eventual consistency). During the sync, the default semantics
is last-writer-wins, but users can specify custom aggregations
(akin to CRDTs [73]). Sum (useful for counters) is a supported
aggregator currently, and we will add more as needed.

The init section initializes the state variables. Initial-
ization may use user input. The req and resp sections
have match-action-based processing for RPC requests and
responses. AppNet invokes these methods with a map that rep-
resents the content of the RPC payload and metadata (which
includes RPC sender, destination, and method type). Users
can match on any valid expression (Exp), and they can specify
multiple actions for each case. Actions either update state or
send a message. The message content can be the RPC (with
its content represented by Var) or an Error. Messages can be
sent downstream (down) to the next element or, if it is the last
element in the chain, to the microservice; they can also be

5

1 client: logging()->load_balancing()
2 any: rate_limiting()->firewall()

(a) An element chain specification with four elements.

1 state:
2 bucket shared
3
4 init():
5
6 req(rpc):
7 key = get(rpc, 'dst')
8 has_token = get(bucket , key, lambda(token):
9 match token > 0:

10 true =>
11 token = token - 1
12 return true
13 false =>
14 return false
15)
16
17 match has_token:
18 true =>
19 send(rpc, down)
20 false =>
21 send(err('rate limited'), up)
22
23 resp(rpc):
24 send(rpc, up)

(b) The element specification for rate limiting.

Figure 5: Example AppNet specifications.

sent upstream (up) to the previous element, which is used for
sending back errors or cached responses. AppNet checks at
runtime if transmitted content can be cast into the expected
RPC. In addition to the up and down channels, users can de-
clare (in state section) and use auxiliary channels (e.g., for
logging to disk).

To access state, AppNet provides get and set functions,
enabling the compiler to infer state dependencies and deter-
mine whether operations should be local or remote. The get
function can accept an optional lambda for computations,
with updates to shared state being atomic. When a lambda
is provided, the original return value of the get function is
passed as an argument to the lambda. AppNet also supports
various computations on RPC fields and states using built-in
functions, including mathematical operators, random number
generators, and utilities for encryption and compression.

Figure 5b shows the AppNet specification for an element
that limits the rate of RPCs to each server replica using a to-
ken bucket. The state section defines a shared state variable
called bucket that tracks available tokens. This element as-
sumes that the control plane (not shown) refreshes the token
bucket periodically by writing to this shared state. During
request processing (Lines 6-21), the element checks if a token
is available in the specified key of the bucket (state variables
are key-value maps). The third argument of the get function

specifies the logic that the data store should execute during
the get operation. If a token is available, it is decremented.

4.2 Optimization
The AppNet compiler finds a high-performance configura-
tion (location, platform, and execution order of each element)
that respects users’ constraints and is semantically equiva-
lent to the input specification. We face a few challenges in
computing such a configuration. First, there is a large space
of possible configurations. For a chain of n elements with k
placement options (location/platform combination) for each,
there are O(n! ·nk) possible configurations. Second, we need
to know which configurations are semantically equivalent
to the user input, which is difficult for reasons mentioned
in § 3.2. Third, multiple competing concerns (e.g., network
traffic, CPU usage, latency, synchronization cost) make perfor-
mance estimation difficult. For instance, positioning elements
that drop RPCs early in the chain can reduce CPU usage and
network traffic, but it can increase synchronization costs by
preventing the consolidation of stateful elements.

AppNet addresses these challenges using a multi-start sim-
ulated annealing framework because it works well with large,
intractable search space. Starting from an initial configuration
with all elements randomly mapped to locations and plat-
forms, the algorithm iteratively applies semantic-preserving
mutations to the current solution and evaluates the new solu-
tion using a cost function. It decides whether to adopt the new
solution based on the cost difference and a probability func-
tion. Finally, it periodically resets the temperature to avoid
getting trapped in local optima.

We describe the cost function below, which is a key deter-
miner of the final output. Appendix E provides more details
on mutation strategies, termination conditions, and evaluation
results on the optimality and scalability of the framework.

Cost function. Our cost function is a heuristic that com-
bines six preferences. In priority order, they are: (1) Prefer
platforms with lower processing costs (e.g., RPC library). (2)
Prefer chains where all elements are located on a single plat-
form, as this enables bypassing other platforms (e.g., server-
side sidecar), significantly reducing processing overhead. (3)
Prefer placements that align with state dependency to avoid
synchronization cost. So, elements sharing a state indexed on
a client replica should be located on the client side. (4) Prefer
co-locating elements that require strong state synchronization
(because dependencies are not aligned). Co-location facil-
itates the consolidation of state synchronization messages,
reducing synchronization costs. (5) Same preference, but for
elements with weak state consistency. (6) Prefer placing el-
ements that may drop RPCs earlier because it reduces work
for downstream elements.

We combine these preferences into a cost function in three
steps. First, we compute element-level costs, which are rep-
resented as tuples with three components: the estimated frac-

6

tion of RPCs reaching the element, a binary value indicating
whether the element requires strong state synchronization, and
a binary value for weak state synchronization. The fraction
of RPCs reaching an element is determined by the expected
drop rates of upstream elements, set to 0 for elements that do
not drop RPCs and a configurable value for those that might
drop them. The default value is 0.05, but it can be provided
by the developer or informed via runtime telemetry.

Second, we divide the input chains into sub-chains based on
location and platform, and compute the cost of each sub-chain
by aggregating the element-level cost tuples into a new tuple
(with the same three components). The first component of the
tuple sums the RPC fractions, reflecting the total processing
cost. The second and third components apply a boolean or, in-
dicating that synchronization costs are paid once per platform,
regardless of how many elements require synchronization.

Finally, we aggregate sub-chain costs into the final chain-
level cost. We convert the sub-chain cost tuples into scalar
values by treating the binary components as 0/1 and comput-
ing a weighted sum of the three values using weights (0.5,
2, 1) for the three dimensions. We then add the baseline plat-
form processing cost of Sp if there are any elements in the
sub-chain for platform p. The chain-level cost is the sum of
these five sub-chain-level costs. We use Sp = 2 for the out-of-
process proxy (either sidecar or remote proxy) and Sp = 0.1
for the RPC library. We have found our results to be robust
to exact values as long as the ordering between parameters is
maintained. In the future, we plan to inform these parameters
based on runtime profiling of different overheads [86].

4.3 Equivalence checking
There are three steps for deciding if two chains being consid-
ered during the optimization are equivalent: (1) symbolically
abstracting what each element does; (2) symbolic execution
of the chains based on the abstract elements; (3) comparing
the outputs of this execution for two chains. We provide an
overview of these steps below. Appendix B has the details
and a proof of correctness.

Symbolic abstraction of elements This analysis creates
an abstract representation of an element that captures the
side effects of the element based on its dependencies. The
side effects include modifications to the RPC, updates to the
internal state, and writes to auxiliary output channels. The
representation does not capture the actual processing.

The abstract representation is a transfer function whose
parameters include the incoming RPC and the pre-state (prior
to RPC processing). We model RPCs using their metadata
and payload fields plus two special fields called drops and
reorders. These fields capture whether the RPC could have
been dropped or reordered.

Figure 6 (left) shows the transfer functions for three ele-
ments inside the green boxes. It assumes that incoming RPCs
have two fields dst (for destination address) and user (for

caller’s identity) and the special field drops (we elide the spe-
cial field reorder for simplicity). Logger logs the incoming
RPC to an auxiliary output channel out, and so its transfer
function appends the incoming RPC to the channel. Load
Balancer is a round-robin load balancer that determines the
destination using a state variable idx that indexes into a list
of replicas and is incremented (with wrap around) after each
RPC. Load Balancer has two transfer functions. One updates
RPC.dst based on idx—LBR is an opaque function that cap-
tures this dependency. The other updates idx based on an
opaque function of idx and the RPC.drops field because if
the RPC were dropped idx will not be updated. The transfer
function of Firewall updates RPC.drops based on RPC.user.

We derive these transfer functions using static analysis on
the element specification. For each RPC field and state vari-
able modified by the element, a transfer function is generated
that replaces the corresponding value with an opaque func-
tion representing the internal logic of the element, together
with all symbols that the element reads, which serve as the
dependencies for the write. For each element that may drop
RPCs, a transfer function is generated that puts a new symbol
representing the potential dropping event into the RPC special
field. Reordering is handled in a similar way.

Symbolic execution of chains Symbolic execution of a chain
produces a chain-level transfer function for the output RPC
and for auxiliary channel outputs and state updates for all
elements. This analysis essentially combined the element-
level transfer functions.

Figure 6 (left) shows the end result of an RPC passing
through that example chain. The auxiliary channel out out-
puts the exact RPC that came in; the internal state idx of the
load balancer is updated by the opaque function LBS whose
parameters are the value of idx prior to RPC’s arrival and the
empty set for RPC.drops field (because the update will be dif-
ferent based on whether the RPC was dropped); and the final
RPC has field values that depend on two opaque functions
(LBR and FW).

Comparing two chains Comparing two chains means com-
paring all of the chain-level transfer functions (result of sym-
bolic execution). When the transfer functions have opaque
functions, they are deemed equal iff their parameters are (re-
cursively) equal; thus, this is basically a syntactic check. For
strong observation consistency, we look for all transfer func-
tions being equal. For weak observation consistency, we ig-
nore the transfer functions for auxiliary channel outputs.

Figure 6 shows the results of this comparison when the
chain on the left is compared against two other options with
different element ordering. Option 1 is deemed weakly equiv-
alent because the two transfer functions differ only for the
auxiliary output of Logger. These transfer functions differ
because the Logging element will record RPCs with a differ-
ent dst field value once it is placed downstream of the Load
Balancer. Option 2 is deemed not equivalent even though it

7

Firewall (FW)
RPC.drops ← RPC.drops ∪ {FW(RPC.user)}

Logger (Log)
out← out∪ {RPC}

Load Balancer (LB)
RPC.dst← LBR(idx); idx← LBS(idx, RPC.drops)

LB

Log

FW

Option 1
Equivalent (weak) Not Equivalent

Option 2

RPC=(d, u, {})

RPC=(LBR(i), u, {})

RPC=(LBR(i), u, {})

RPC=(LBR(i), u, {FW(u)})

RPC=(dst=d, user=u, drops={})

idx=LBS(i, {})

out={(d, u, {})}

{(LBR(i), u, {})}

(LBR(i), u, {FW(u)})

LBS(i, {})

RPC=(LBR(i), u, {})

Log

FW

LB LBS(i, {FW(u)})

(LBR(i), u, {FW(u)})

{(d, u, {})}

RPC=(d, u, {})

RPC=(d, u, {FW(u)})

RPC=(dst=d, user=u, drops={})

Figure 6: Equivalence-checking example. The transfer functions of the elements are inside the rounded green boxes. The
rectangular boxes are channel outputs, and the oval ones are state updates determined by symbolic execution. Equivalence with
strong semantics checks all outputs and state updates, and equivalence with weak semantics ignores yellow boxes (auxiliary
outputs). The symbols marked red are those different from the original ones.

has identical transfer functions for Logger output and the final
output RPC. The problem is that the transfer function for
the state update for Load Balancer changes when it is placed
downstream of the Firewall. This difference is surfacing the
subtlety that Load Balancer will send subsequent RPCs to
different destinations because the behavior of its round-robin
logic is impacted by dropped RPCs.

5 Implementation
We implemented the AppNet compiler using 16K lines of
Python and the controller using 3.1K lines of Go that inte-
grates with Istio [39] and Kubernetes [33]. Developers use a
custom Kubernetes resource [34] to provide AppNet specifica-
tions. The controller watches for changes to this resource and
the application deployment (e.g., a new replica is launched)
and updates the data plane platform appropriately.

AppNet currently supports three RPC processing platforms:
(1) gRPC, a popular RPC library, for which we produce mod-
ules in Go that can be deployed as gRPC interceptors [29];
(2) EnvoyNative, for which we produce modules that C++ En-
voy filters [31]; and (3) EnvoyWasm, a WebAssembly-based
execution environment provided by Envoy [40], for which
we produce modules in Rust that are later compiled to We-
bAssembly using the Rust compiler.

The overhead of these platforms increases in the listed
order and the platforms differ in other ways as well (which
makes the choice of the right platform a complex one). The
gRPC modules run within the client or server address space,
and so this platform cannot be used to run elements for which
microservice code cannot be trusted. gRPC and EnvoyWasm
allow dynamically updating running modules (without down-
time); EnvoyNative does not. EnvoyNative and EnvoyWasm
can be co-located with the client or server (as a sidecar proxy)

or run in a remote proxy [13]; gRPC cannot be executed via a
remote proxy.

AppNet assumes that its target platform provides access to
RPC headers and payloads in plaintext (i.e., without mTLS).
gRPC interceptors are always executed before mTLS is ap-
plied, and Envoy (in both sidecar and remote deployments)
can be configured to terminate the mTLS connection [8]. In
scenarios where end-to-end mTLS is required, AppNet will
limit its target platforms to gRPC interceptors to ensure com-
pliance with encryption requirements.

To synchronize shared state with strong consistency, we
adopted the approach used by Envoy’s global rate limiter [27]
and StatelessNF [57]. Specifically, we use Redis [38] and
route every state access through it. The synchronization for
weak state consistency uses the same approach, but the syn-
chronization is moved to the background.

Compiler benchmarks Finding the optimal runtime config-
uration takes 1.4s for 5-element chains that we use in § 6.2.
Generating modules for gRPC interceptors and EnvoyWasm
takes a few seconds, but it takes 1-2 minutes for EnvoyNative
because that involves compiling the Envoy codebase.

6 Evaluation
Our evaluation aims to answer the following: (1) Can AppNet
easily express common ANFs? (2) Can it reduce the overhead
of application networks? (3) Does that reduction improve
application performance?

6.1 Expressiveness
To evaluate the expressiveness of AppNet, we implement the
12 common ANFs in Table 1 which we identified based on
a survey of common ANFs. As examples of more complex
functionality, we also implement routing and load balanc-

8

Shared LoC
state (AppNet)

Fault Injection [23] 11
Cache [22] ✓ 14

Rate Limiting [24] ✓ 25
Load Balancing [26] ✓ 13

Logging [20] 10
Mutation [30] 7

Application Firewall [15] ✓ 12
Metrics [28] 12

Admission Control [45] 21
Encryption [12] 28

Bandwidth Limit [21] 21
Circuit Breaking [32] 16
ServiceRouter [70] ✓ 62

Prequal [82] ✓ 88

Table 2: ANFs implemented in AppNet.

ing in Meta’s ServiceRouter [70] and Google’s Prequal [82].
Appendix F details these implementations.

We are able to express all 14 ANFs in AppNet. As a proxy
for ease of use, Table 2 shows the lines of code (LoC) of each.
The 12 common ANFs need only 7-28 lines, and ServiceR-
outer and Prequal need only 62 and 88 lines. Some elements
have a control plane component (e.g., for maintaining the
replica list for load balancing). These lines do not include
those components. We find it encouraging that so few lines
are needed to express the data plane of ANFs.

For comparison, we also implement the same ANFs in the
native languages of the platforms (Go for gRPC, C++ for
EnvoyNative, Rust for EnvoyWasm). These ANFs need 5-60x
more lines than AppNet elements. C++ modules are the worst,
needing 4x more lines than Go and Rust modules.

High-level languages can hurt performance if the generated
code is not as efficient as hand-optimized code. We find that
the processing time and CPU usage of AppNet elements is
only 1-4% higher than similar filters [31] bundled with Envoy.
See Appendix D for details.

The value of AppNet specifications lies not only in their
compactness but also in enabling optimizations that lower
overhead. We evaluate this next.

6.2 RPC Processing Overhead
To assess how well AppNet reduces the RPC processing over-
head, we need a corpus of network specifications used in
practice. But such a dataset does not exist to our knowl-
edge, so we create a wide array of network specifications
randomly and benchmark the range of overhead reduction.
This method helps understand specification characteristics
that lead to higher or lower overhead.

We create a dataset by randomly picking elements in the
chain from the 12 common ANFs in Table 2. We study chains
of sizes 3 and 5 and randomly assign each element to a sub-
chain (client, server, or any). We also randomly assign plat-
form constraints, which include "do not run in an RPC library"

and "requires dynamic upgrades." The first constraint disal-
lows gRPC, and the second constraint disallows EnvoyNative.
Modulo these location and platform constraints, AppNet is
free to optimize the chain as it sees fit.

Experimental setup We consider three metrics: (1) Service
Time is the time to complete an RPC request when the service
has a minimal load (at most one outstanding request); (2) Tail
Latency is the 90th percentile latency with moderate load
(30-40% CPU utilization); and (3) CPU Usage is the number
of virtual cores used for processing RPCs.

We use Echo Server as the application which has a fron-
tend microservice that sends an echo request and a backend
microservice that responds with an echo response. This sim-
ple application helps us microbenchmark RPC processing
overhead. We study more complex applications later. All ap-
plications in this paper use Go and gRPC, and all experiments
use five replicas per microservice. The results are qualitatively
similar for different replica counts.

We quantify AppNet’s overhead reduction by comparing
against two baselines: (1) NoOpt randomly assigns elements
while honoring explicit location or platform constraints, (2)
LocalOpt favors platforms with lower processing costs (first
gRPC, then EnvoyNative, then EnvoyWasm) and prioritizes
placements that align with state dependencies (e.g., placing
elements that depend on client replicas on the client side).
NoOpt captures what may happen when developers do not
attempt any performance optimization, and LocalOpt captures
what an informed developer might do—optimize for individ-
ual elements—excludes chain-wide optimizations that are
difficult to do manually. Both baselines maintain the element
ordering of the input specification and make placement de-
cisions for elements in order. Thus, choices available for an
element depend on the choices made for upstream elements.

We use Cloudlab [51] machines with two 16-core Intel
Xeon Gold 6142 CPUs (2.6 GHz) and 384GB RAM, Ubuntu
20.04 (Linux kernel v5.4.0), Kubernetes v1.28.13, and Envoy
1.30.5. We disable TurboBoost, CPU C-states, and dynamic
CPU frequency scaling to reduce measurement variance. We
use wrk [41] and wrk2 [42] for load generation as well as
high-precision measurement of latency. The remote proxy is
shared by all replicas of the client and server microservices.

6.2.1 Overhead reduction

Figure 7 compares the performance of LocalOpt and AppNet
with strong and weak consistency against NoOpt. It plots the
reduction in the three metrics for 30 randomly selected 5-
element chains. The absolute metrics of NoOpt (not shown in
the graph) are 0.8–2.0 ms for service time, 2.5–12.1 ms for
tail latency, and 10.9–28.6 virtual cores for CPU usage. These
numbers exclude the processing time and CPU usage of the
Echo Server application itself.

Both LocalOpt and AppNet show improvements across all
three metrics. LocalOpt achieves a median reduction of 25%
in service time, 27% in tail latency, and 22% in CPU usage.

9

0 20 40 60 80 100
Service Time Reduction (%)

0.00

0.25

0.50

0.75

1.00
CD

F

0 20 40 60 80 100
Tail Latency Reduction (%)

0.00

0.25

0.50

0.75

1.00

CD
F

0 20 40 60 80 100
CPU Usage Reduction (%)

0.00

0.25

0.50

0.75

1.00

CD
F

LocalOpt AppNet (Strong Consistency) AppNet (Weak Consistency)

Figure 7: Reduction in RPC processing overhead compared to NoOpt. There are 5 elements in each chain.

AppNet, even when enforcing strong consistency, performs
substantially better, with median reductions of 47% in ser-
vice time, 44% in tail latency, and 42% in CPU usage. With
weak consistency, AppNet further reduces overhead. Median
reduction is 74-83%.

The degree of overhead reduction varies significantly
across chains, influenced by which elements are present and
location, platform constraints. By looking at the underlying
data, we draw the following conclusions: the presence and
placement of shared state elements within the chosen chain
determine the potential for reducing synchronization over-
head. The greatest reductions occur when multiple shared
state elements are present and can be co-located and com-
bined. Chains that allow more flexible element placement
tend to yield higher gains. In contrast, chains with strict
placement constraints limit the ability to group elements
on one side and bypass a platform (e.g., a sidecar) on the
other. Noticeable gains are also observed when elements
that drop RPCs are positioned early in the chain, enabling
them to execute sooner. AppNet’s optimization algorithm is
able to sift through these opportunities and find performant
configurations. In contrast, LocalOpt uses a simplistic ap-
proach—selecting platforms based on processing costs and
aligning state dependencies—and misses cross-element and
cross-platform optimization opportunities.

6.2.2 Impact of available optimization opportunities

To shed light on overhead reduction as a function of avail-
able optimization opportunities, we now consider deployment
environments that are limited to a single platform (but still
multiple locations) or have shorter chains. These experiments
are interesting also because some organization may not em-
ploy multiple platforms. The optimization opportunities that
AppNet can tap in each platform differ. RPC libraries, which
can only be used with fully trusted applications, are always
in the path and have low overhead. So, they only benefit from
reordering and moving elements between clients and servers
(e.g., based on state synchronization costs). EnvoyNative has
additional benefits when it can be completely bypassed (by
moving all elements to one location). EnvoyWasm, which
is used when dynamic upgrades are preferred, additionally
benefits from consolidating multiple elements into one mod-

ule because that reduces the number of invocations of the
WebAssembly VM.

Figure 8 plots the overhead reduction for all three single-
platform environment and the all-platforms environment. The
experimental methodology is similar to the last section except
that there are no constraints related to application trust and
dynamic upgrades. In addition to 5-element chains, it plots 3-
element chains which offer fewer optimization opportunities.

For 5-element chains, the median overhead reduction is
3–48% for the median, p10 is 0–24%, and p90 is 27–76%.
The extent of the reduction varies across platforms due to the
distinct characteristics of each as noted above. Even when
reordering and client-vs-server placement are the only op-
timization opportunities (as in gRPC), we see a noticeable
overhead reduction, especially for tail latency and CPU usage.
AppNet significantly reduces overhead even for 3-element
chains,though the reduction tends to be lower than for 5-
element chains.

The reduction is generally higher as optimization opportu-
nities increase. It is highest for the all-platforms environment
because that also opens up the opportunity of using the plat-
form with the least overhead when permitted by user policies.
Due to implementation-level differences (Go vs. Rust), the
state synchronization cost in gRPC is higher than in Envoy,
which explains why, in some cases, gRPC optimizations are
greater than those of Envoy.

LocalOpt often provides little to no benefit for single-
platform environments. Here, it primarily aligns state depen-
dencies, which helps only when an element is unconstrained
and NoOpt (randomly) picks suboptimal placement. Such
occurrences are rare.

6.2.3 Impact of weak state and observation consistency

Figure 9 shows the impact of using weak state consistency
and weak observation consistency separately. It plots the re-
duction in overhead relative to strong consistency for both.
For each curve, the set of chains is limited to those where that
consistency type is relevant, i.e., there is at least one shared
state variable for state consistency and at least one auxiliary
output for observation consistency.

We see that weak state consistency leads to substantial re-
ductions across a variety of chains, with median reduction

10

R3 R5 N3 N5 W3 W5 A3 A50

25

50

75

100

Se
rv

ice
 T

im
e

Re
du

ct
io

n
(%

)

R3 R5 N3 N5 W3 W5 A3 A50

25

50

75

100

Ta
il

La
te

nc
y

Re
du

ct
io

n
(%

)

R3 R5 N3 N5 W3 W5 A3 A50

25

50

75

100

CP
U

Us
ag

e
Re

du
ct

io
n

(%
)

LocalOpt AppNet (Strong Consistency) AppNet (Weak Consistency)

Figure 8: Reduction in RPC processing overhead compared to NoOpt. In the bar labels, the letter denotes available platforms (R
= gRPC, N = EnvoyNative, W = EnvoyWasm, and A = all platforms), and the number denotes the chain length. The bar height
denotes the median reduction and the error bars denote the 10th and 90th percentiles.

0 20 40 60 80 100
Service Time Reduction (%)

0.00

0.25

0.50

0.75

1.00

CD
F

0 20 40 60 80 100
Tail Latency Reduction (%)

0.00

0.25

0.50

0.75

1.00
CD

F

0 20 40 60 80 100
CPU Usage Reduction (%)

0.00

0.25

0.50

0.75

1.00

CD
F

Weak Observation Consistency Weak State Consistency

Figure 9: RPC processing overhead reduction with the two types of weak consistency relative to strong consistency.

ranging from 45% to 69%. This reduction stems from mak-
ing state synchronization a background task. The degree of
reduction depends on the number of shared-state elements
included and whether they can be consolidated based on their
placement constraints.

The overhead reduction from weak observation consistency
is lower. A primary source of gain from weak observation
consistency is moving a dropping element upstream, which
reduces downstream work. But when the drop rate is low, as
in our experiments, the gain is small. The gain will be higher
in scenarios with higher drop rates (e.g., a rate limiter under
heavy load). Despite low drop rates, we see a reduction in
service time, tail latency, and CPU usage in 38-55% of the
cases. Much of this reduction stems from weak observation
enabling AppNet to reorder and consolidate more elements.

6.3 Application performance

We now evaluate the extent to which the reduction in RPC pro-
cessing overhead in AppNet translates to end-to-end improve-
ment in application-level performance. This section studies
the Hotel Reservation application [53] (Figure 1), and Ap-
pendix C studies the Online Boutique application [36]. We
use Hotel Reservation’s search query, which retrieves avail-
able hotels based on location and check-in/check-out dates
and involves calls to the Frontend, Search, Rates, Geo, Pro-
file, Reserve microservices, and their associated MongoDB
and Memcached storage systems. For each communication
edge between microservices, we generate 5-element chains

randomly (as in § 6.2.1). We measure end-to-end latency and
total CPU.

Figure 10 shows the reduction in latency and CPU com-
pared to NoOpt. The baseline metrics (not shown) are 7.2–
14.1 ms for service time, 35.6–92.4 ms for tail latency, and
136.4-219.3 virtual cores for CPU usage.

LocalOpt demonstrates moderate performance gains across
all metrics and chain configurations, with median reductions
of 14% in service time and 11% in both tail latency and CPU
usage. AppNet achieves more substantial improvements: with
strong consistency, median reductions are 35% for service
time, 29% for tail latency, and 26% for CPU usage. Weak
consistency improves these numbers to 49%, 41%, and 42%,
respectively.

Our results show that reducing RPC processing overhead
leads to substantial improvements in end-to-end application
performance. This is because this overhead is a substantial
contributor toward application latency and CPU usage [5, 66,
71, 86]. Lowering this overhead directly helps applications by
alleviating the tax of the microservices architecture.

7 Related Work
AppNet draws on four themes of prior work.

High-level network programming We draw heavily from
the large body of work of high-level network programming,
which has been explored in several contexts. Early work
such as Click [60] focused on packet-processing in software
switches. We borrow from this domain the idea of expressing

11

0 20 40 60 80 100
Service Time Reduction (%)

0.00

0.25

0.50

0.75

1.00
CD

F

0 20 40 60 80 100
Tail Latency Reduction (%)

0.00

0.25

0.50

0.75

1.00

CD
F

0 20 40 60 80 100
CPU Usage Reduction (%)

0.00

0.25

0.50

0.75

1.00

CD
F

LocalOpt AppNet (Strong Consistency) AppNet (Weak Consistency)

Figure 10: Performance improvement of Hotel Reservation compared to the NoOpt.

network functionality as a chain of elements. A key difference
between AppNet and these systems is that AppNet includes
abstractions for processing inside an element, which allows it
to optimize the chain end-to-end.

A second wave focused on network-wide packet forward-
ing, catalyzed by software-defined networking (SDN) [43,
52, 68], where the focus was on layer-3/4 packet forwarding
with capabilities like determining next hops and filtering. In
contrast, AppNet targets rich, stateful functions and a setting
where the network can scale dynamically.

The advent of programmable switches engendered work
on high-level programming for them [46, 54, 75]. We borrow
the match-action primitive from this work. Our match-action
rules are richer, corresponding to the need for rich, layer-7
processing and aided by not being bound by hardware con-
straints. AppNet abstractions include shared state handling
and optimizations across elements in a chain.

A parallel line of work focuses on NFs (network functions)
in middleboxes. NetBricks [63] improves performance by
composing multiple functions using a safe runtime, so they
do not have to use separate VMs. It does not provide ab-
stractions for individual functions, which allow us to safely
combine multiple functions. Rubik [62] provides a language
for efficient, low-level packet handling (e.g., assembling IP
fragments and reconstructing TCP streams). AppNet abstrac-
tions focus on the RPC layer.

Reducing the overhead of application networks. There
is broad awareness in the industry about the overhead of
application networks [2, 5]. Several projects [13, 17] target
this challenge by changing the software design of service
meshes. Meta built ServiceRouter [70] to lower application
networking overhead for specific functions, such as routing
requests based on applications’ sharding keys, and Alibaba
built Canal Mesh [76] to address the overhead of sidecars by
moving processing to a remote proxy. Unlike AppNet, none
of these works focus on high-level programming to support
diverse applications, deployment modes, and capabilities.

NF Optimizations. Optimizing NF chains for perfor-
mance and resource efficiency has been an active area of
research [48, 58, 64, 72, 78]. OpenBox [48] reduces redun-

dancy in NF chains by eliminating overlapping logic across
functions. Metron [58] builds on this by offloading parts of
the merged logic to programmable switches. NFP [78] and
Maestro [64] leverage parallelization to accelerate both inter-
and intra-NF processing. In general, these systems focus on
processing lower-level protocols and raw network packets,
which have goals distinct from those of AppNet. Additionally,
traditional NFs typically operate within dedicated middle-
boxes, while AppNet targets RPC processing tasks that can
run in diverse environments, including RPC libraries, sidecar
proxies, or middlebox-style remote proxies.

State management in NFs Works on scaling NFs show
that managing state is a central challenge. Split/Merge [67],
S6 [81], StatelessNF [57], SwiSh [84] manage different types
of state based on its properties, and OpenNF [55] develops
techniques to (approximately) infer properties of state in ex-
isting NFs. While these works do not focus on high-level
message processing abstractions, they have influenced our
design—our primitives enable a compiler to automatically
infer important properties of state, and our state handling
(placement and partitioning) draws on lessons from them.

8 Conclusions

AppNet enables expressive and high-performance application
networks by decoupling the specification of ANF from its
implementation. Its specification language is easy to use—
common ANFs can be expressed in only 7–28 lines of code.
It generates high-performance implementations based on an
approach that reasons about estimated performance and se-
mantic equivalence of possible implementations. Our experi-
ments show that this approach lowers RPC processing latency
and CPU usage by, respectively, 82% and 75%.

Acknowledgements

We thank the NSDI reviewers and our shepherd, Jiaqi Gao, for
their feedback. This work was supported in part by UW FOCI
and its partners (Alibaba, Amazon, Cisco, Google, Microsoft,
and VMware), by NSF Grant 2402695 and 2402696, and by
ACE, a center that is part of DARPA’s JUMP 2.0.

12

References
[1] Enabling GZIP Response Compression with Envoy-

Filter. https://karlstoney.com/enabling-gzip-
compression-with-envoyfilter/, 2019.

[2] Performance Benchmark Analysis of Istio and
Linkerd. https://kinvolk.io/blog/2019/05/
performance-benchmark-analysis-of-istio-
and-linkerd/, 2019.

[3] Benchmarking Linkerd and Istio: 2021 Redux.
https://linkerd.io/2021/11/29/linkerd-vs-
istio-benchmarks-2021/, 2021.

[4] Embracing eventual consistency in SoA network-
ing. https://blog.envoyproxy.io/embracing-
eventual-consistency-in-soa-networking-
32a5ee5d443d, 2022.

[5] Istio: Performance and Scalability. https:
//istio.io/latest/docs/ops/deployment/
performance-and-scalability/, 2022.

[6] Performance Impacts of an Istio Service Mesh. https:
//pklinker.medium.com/performance-impacts-
of-an-istio-service-mesh-63957a0000b, 2022.

[7] Service meshes are on the rise — but greater
understanding and experience are required.
https://www.cncf.io/wp-content/uploads/2022/
05/CNCF_Service_Mesh_MicroSurvey_Final.pdf,
2022.

[8] Understanding Istio Ambient Ztunnel and Secure Over-
lay. https://www.solo.io/blog/understanding-
istio-ambient-ztunnel-and-secure-overlay,
2022.

[9] Use Dataflow SQL. https://cloud.google.com/
dataflow/docs/guides/sql/dataflow-sql-
intro, 2022.

[10] Better Load Balancing: Real-Time Dynamic Subsetting.
https://www.uber.com/en-US/blog/better-load-
balancing-real-time-dynamic-subsetting/,
2023.

[11] Go gRPC Middleware. https://github.com/grpc-
ecosystem/go-grpc-middleware, 2023.

[12] gRPC Encryption. https://github.com/grpc/
grpc-go/blob/master/examples/features/
encryption/README.md, 2023.

[13] Introducing Ambient Mesh. https://istio.io/
v1.15/blog/2022/introducing-ambient-mesh/,
2023.

[14] Linkerd Features. https://linkerd.io/2.14/
features/, 2023.

[15] OWASP Coraza Web Application Firewall. https://
coraza.io/, 2023.

[16] AppNet: Expressing, easy-to-build, and high-
performance application networks. https:
//appnet.wiki/, 2024.

[17] Cilium Service Mesh. https://cilium.io/use-
cases/service-mesh/, 2024.

[18] Cloud Service Mesh with proxyless gRPC.
https://cloud.google.com/service-mesh/docs/
service-routing/proxyless-overview, 2024.

[19] Envoy. https://www.envoyproxy.io/, 2024.

[20] Envoy: Application logging. https:
//www.envoyproxy.io/docs/envoy/latest/
configuration/observability/application_
logging, 2024.

[21] Envoy: Bandwidth limiting. https://
www.envoyproxy.io/docs/envoy/latest/intro/
arch_overview/other_features/bandwidth_
limiting, 2024.

[22] Envoy: Cache filter. https://www.envoyproxy.io/
docs/envoy/latest/configuration/http/http_
filters/cache_filter, 2024.

[23] Envoy: Fault Injection. https://istio.io/
latest/docs/tasks/traffic-management/fault-
injection/, 2024.

[24] Envoy: Global rate limiting. https://
www.envoyproxy.io/docs/envoy/latest/intro/
arch_overview/other_features/global_rate_
limiting, 2024.

[25] Envoy: HTTP Routing. https://
www.envoyproxy.io/docs/envoy/latest/intro/
arch_overview/http/http_routing, 2024.

[26] Envoy: Load Balancing. https://
www.envoyproxy.io/docs/envoy/latest/intro/
arch_overview/upstream/load_balancing/load_
balancing, 2024.

[27] Envoy: Rate limit. https://github.com/
envoyproxy/ratelimit, 2024.

[28] Envoy Statistics. https://istio.io/latest/docs/
ops/configuration/telemetry/envoy-stats/,
2024.

[29] gRPC Interceptors. https://grpc.io/docs/guides/
interceptors/, 2024.

13

https://karlstoney.com/enabling-gzip-compression-with-envoyfilter/
https://karlstoney.com/enabling-gzip-compression-with-envoyfilter/
https://kinvolk.io/blog/2019/05/performance-benchmark-analysis-of-istio-and-linkerd/
https://kinvolk.io/blog/2019/05/performance-benchmark-analysis-of-istio-and-linkerd/
https://kinvolk.io/blog/2019/05/performance-benchmark-analysis-of-istio-and-linkerd/
https://linkerd.io/2021/11/29/linkerd-vs-istio-benchmarks-2021/
https://linkerd.io/2021/11/29/linkerd-vs-istio-benchmarks-2021/
https://blog.envoyproxy.io/embracing-eventual-consistency-in-soa-networking-32a5ee5d443d
https://blog.envoyproxy.io/embracing-eventual-consistency-in-soa-networking-32a5ee5d443d
https://blog.envoyproxy.io/embracing-eventual-consistency-in-soa-networking-32a5ee5d443d
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://pklinker.medium.com/performance-impacts-of-an-istio-service-mesh-63957a0000b
https://pklinker.medium.com/performance-impacts-of-an-istio-service-mesh-63957a0000b
https://pklinker.medium.com/performance-impacts-of-an-istio-service-mesh-63957a0000b
https://www.cncf.io/wp-content/uploads/2022/05/CNCF_Service_Mesh_MicroSurvey_Final.pdf
https://www.cncf.io/wp-content/uploads/2022/05/CNCF_Service_Mesh_MicroSurvey_Final.pdf
https://www.solo.io/blog/understanding-istio-ambient-ztunnel-and-secure-overlay
https://www.solo.io/blog/understanding-istio-ambient-ztunnel-and-secure-overlay
https://cloud.google.com/dataflow/docs/guides/sql/dataflow-sql-intro
https://cloud.google.com/dataflow/docs/guides/sql/dataflow-sql-intro
https://cloud.google.com/dataflow/docs/guides/sql/dataflow-sql-intro
https://www.uber.com/en-US/blog/better-load-balancing-real-time-dynamic-subsetting/
https://www.uber.com/en-US/blog/better-load-balancing-real-time-dynamic-subsetting/
https://github.com/grpc-ecosystem/go-grpc-middleware
https://github.com/grpc-ecosystem/go-grpc-middleware
https://github.com/grpc/grpc-go/blob/master/examples/features/encryption/README.md
https://github.com/grpc/grpc-go/blob/master/examples/features/encryption/README.md
https://github.com/grpc/grpc-go/blob/master/examples/features/encryption/README.md
https://istio.io/v1.15/blog/2022/introducing-ambient-mesh/
https://istio.io/v1.15/blog/2022/introducing-ambient-mesh/
https://linkerd.io/2.14/features/
https://linkerd.io/2.14/features/
https://coraza.io/
https://coraza.io/
https://appnet.wiki/
https://appnet.wiki/
https://cilium.io/use-cases/service-mesh/
https://cilium.io/use-cases/service-mesh/
https://cloud.google.com/service-mesh/docs/service-routing/proxyless-overview
https://cloud.google.com/service-mesh/docs/service-routing/proxyless-overview
https://www.envoyproxy.io/
https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/application_logging
https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/application_logging
https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/application_logging
https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/application_logging
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_features/bandwidth_limiting
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_features/bandwidth_limiting
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_features/bandwidth_limiting
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_features/bandwidth_limiting
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/cache_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/cache_filter
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/cache_filter
https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_features/global_rate_limiting
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_features/global_rate_limiting
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_features/global_rate_limiting
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_features/global_rate_limiting
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/http/http_routing
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/http/http_routing
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/http/http_routing
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancing
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancing
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancing
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancing
https://github.com/envoyproxy/ratelimit
https://github.com/envoyproxy/ratelimit
https://istio.io/latest/docs/ops/configuration/telemetry/envoy-stats/
https://istio.io/latest/docs/ops/configuration/telemetry/envoy-stats/
https://grpc.io/docs/guides/interceptors/
https://grpc.io/docs/guides/interceptors/

[30] gRPC-tools. https://github.com/bradleyjkemp/
grpc-tools, 2024.

[31] HTTP filters. https://www.envoyproxy.io/
docs/envoy/latest/configuration/http/http_
filters/http_filters, 2024.

[32] Istio: Circuit Breaking. https://istio.io/latest/
docs/tasks/traffic-management/circuit-
breaking/, 2024.

[33] Kubernetes. https://kubernetes.io/, 2024.

[34] Kubernetes: Custom Resources. https:
//kubernetes.io/docs/concepts/extend-
kubernetes/api-extension/custom-resources/,
2024.

[35] Linkerd: the world’s most advanced service mesh.
https://linkerd.io/, 2024.

[36] Online Boutique. https://github.com/
GoogleCloudPlatform/microservices-demo,
2024.

[37] Protocol Buffers. https://protobuf.dev/, 2024.

[38] Redis. https://redis.io/, 2024.

[39] The Istio Service Mesh. https://istio.io/, 2024.

[40] WebAssembly in Envoy. https://github.com/
proxy-wasm/spec/blob/master/docs/
WebAssembly-in-Envoy.md, 2024.

[41] wrk. https://github.com/wg/wrk, 2024.

[42] wrk2. https://github.com/giltene/wrk2, 2024.

[43] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-
Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and
David Walker. Netkat: Semantic foundations for net-
works. ACM SIGPLAN notices, 49(1):113–126, 2014.

[44] Mina Tahmasbi Arashloo, Yaron Koral, Michael Green-
berg, Jennifer Rexford, and David Walker. SNAP: State-
ful network-wide abstractions for packet processing. In
Proceedings of the ACM SIGCOMM 2016 Conference,
pages 29–43, 2016.

[45] Betsy Beyer, Chris Jones, Jennifer Petoff, and
Niall Richard Murphy. Site reliability engineering:
How Google runs production systems. O’Reilly Media,
Inc., 2016.

[46] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[47] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. ACM SIGCOMM Computer Communication Re-
view, 43(4):99–110, 2013.

[48] Anat Bremler-Barr, Yotam Harchol, and David Hay.
Openbox: A software-defined framework for develop-
ing, deploying, and managing network functions. In
Proceedings of the 2016 ACM SIGCOMM Conference,
pages 511–524, 2016.

[49] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly avail-
able key-value store. ACM SIGOPS operating systems
review, 41(6):205–220, 2007.

[50] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch
Lafuente, Manuel Mazzara, Fabrizio Montesi, Ruslan
Mustafin, and Larisa Safina. Microservices: yesterday,
today, and tomorrow. Present and ulterior software en-
gineering, pages 195–216, 2017.

[51] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
design and operation of cloudlab. In 2019 USENIX
Annual Technical Conference (ATC 19), pages 1–14,
2019.

[52] Nate Foster, Rob Harrison, Michael J Freedman, Christo-
pher Monsanto, Jennifer Rexford, Alec Story, and David
Walker. Frenetic: A network programming language.
ACM SIGPLAN Notices, 46(9):279–291, 2011.

[53] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems. In Pro-
ceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 3–18, 2019.

[54] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao,
Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming
Zhang, and Minlan Yu. Lyra: A cross-platform language
and compiler for data plane programming on heteroge-
neous asics. In Proceedings of the ACM SIGCOMM
2020 Conference, pages 435–450, 2020.

[55] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,

14

https://github.com/bradleyjkemp/grpc-tools
https://github.com/bradleyjkemp/grpc-tools
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://istio.io/latest/docs/tasks/traffic-management/circuit-breaking/
https://istio.io/latest/docs/tasks/traffic-management/circuit-breaking/
https://istio.io/latest/docs/tasks/traffic-management/circuit-breaking/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://linkerd.io/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://protobuf.dev/
https://redis.io/
https://istio.io/
https://github.com/proxy-wasm/spec/blob/master/docs/WebAssembly-in-Envoy.md
https://github.com/proxy-wasm/spec/blob/master/docs/WebAssembly-in-Envoy.md
https://github.com/proxy-wasm/spec/blob/master/docs/WebAssembly-in-Envoy.md
https://github.com/wg/wrk
https://github.com/giltene/wrk2

Sourav Das, and Aditya Akella. Opennf: Enabling inno-
vation in network function control. ACM SIGCOMM
Computer Communication Review, 44(4):163–174,
2014.

[56] Darby Huye, Yuri Shkuro, and Raja R Sambasivan. Lift-
ing the veil on Meta’s microservice architecture: Analy-
ses of topology and request workflows. In 2023 USENIX
Annual Technical Conference (ATC 23), pages 419–432,
2023.

[57] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck
Le. Stateless network functions: Breaking the tight cou-
pling of state and processing. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 97–112, 2017.

[58] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Re-
becca Steinert, and Gerald Q Maguire Jr. Metron:NFV
service chains at the true speed of the underlying hard-
ware. In 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 18), pages 171–
186, 2018.

[59] James C King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[60] Eddie Kohler, Robert Morris, Benjie Chen, John Jan-
notti, and M Frans Kaashoek. The click modular
router. ACM Transactions on Computer Systems
(TOCS), 18(3):263–297, 2000.

[61] Hao Li, Yihan Dang, Guangda Sun, Guyue Liu, Danfeng
Shan, and Peng Zhang. LemonNFV: Consolidating
heterogeneous network functions at line speed. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1451–1468, 2023.

[62] Hao Li, Changhao Wu, Guangda Sun, Peng Zhang, Dan-
feng Shan, Tian Pan, and Chengchen Hu. Program-
ming network stack for middleboxes with rubik. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 551–570, 2021.

[63] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-
ing the v out of NFV. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 203–216, 2016.

[64] Francisco Pereira, Fernando MV Ramos, and Luis Pe-
drosa. Automatic parallelization of software network
functions. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), pages
1531–1550, 2024.

[65] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, et al. FlowBlaze: Stateful packet pro-
cessing in hardware. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
19), pages 531–548, 2019.

[66] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang,
and KK Ramakrishnan. Spright: extracting the server
from serverless computing! high-performance ebpf-
based event-driven, shared-memory processing. In Pro-
ceedings of the ACM SIGCOMM 2022 Conference,
pages 780–794, 2022.

[67] Shriram Rajagopalan, Dan Williams, Hani Jamjoom,
and Andrew Warfield. Split/Merge: System support
for elastic execution in virtual middleboxes. In 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 227–240, 2013.

[68] Joshua Reich, Christopher Monsanto, Nate Foster, Jen-
nifer Rexford, and David Walker. Modular SDN pro-
gramming with pyretic. Technical Report of USENIX,
2013.

[69] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for net-
work update. ACM SIGCOMM Computer Communica-
tion Review, 42(4):323–334, 2012.

[70] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max
Kontorovich, Josh Kirstein, Margot Leibold, Dimitrios
Skarlatos, Hitesh Khandelwal, and Chunqiang Tang. Ser-
viceRouter: Hyperscale and minimal cost service mesh
at meta. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages
969–985, 2023.

[71] Korakit Seemakhupt, Brent E Stephens, Samira Khan,
Sihang Liu, Hassan Wassel, Soheil Hassas Yeganeh,
Alex C Snoeren, Arvind Krishnamurthy, David E Culler,
and Henry M Levy. A cloud-scale characterization of re-
mote procedure calls. In Proceedings of the 29th Sympo-
sium on Operating Systems Principles, pages 498–514,
2023.

[72] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K
Reiter, and Guangyu Shi. Design and implementation of
a consolidated middlebox architecture. In 9th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 12), pages 323–336, 2012.

[73] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and
Marek Zawirski. Conflict-free replicated data types.

15

In Stabilization, Safety, and Security of Distributed Sys-
tems: 13th International Symposium, SSS 2011, Greno-
ble, France, October 10-12, 2011. Proceedings 13, pages
386–400. Springer, 2011.

[74] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming
for line-rate switches. In Proceedings of the ACM SIG-
COMM 2016 Conference, pages 15–28, 2016.

[75] John Sonchack, Devon Loehr, Jennifer Rexford, and
David Walker. Lucid: A language for control in the data
plane. In Proceedings of the ACM SIGCOMM 2021
Conference, pages 731–747, 2021.

[76] Enge Song, Yang Song, Chengyun Lu, Tian Pan,
Shaokai Zhang, Jianyuan Lu, Jiangu Zhao, Xining Wang,
Xiaomin Wu, Minglan Gao, et al. Canal mesh: A cloud-
scale sidecar-free multi-tenant service mesh architecture.
In Proceedings of the ACM SIGCOMM 2024 Confer-
ence, pages 860–875, 2024.

[77] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël
Pouchet, Fabrice Rastello, Jagannathan Ramanujam, and
Ponnuswamy Sadayappan. A framework for enhancing
data reuse via associative reordering. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 65–76,
2014.

[78] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and
Hongxin Hu. NFP: Enabling network function paral-
lelism in NFV. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 43–56, 2017.

[79] Wlamir Olivares Loesch Vianna, Leonardo Ramos Ro-
drigues, Takashi Yoneyama, and David Issa Mattos.
Troubleshooting optimization using multi-start simu-
lated annealing. In 2016 Annual IEEE Systems Confer-
ence (SysCon), pages 1–6. IEEE, 2016.

[80] Andreas Voellmy, Junchang Wang, Y Richard Yang,
Bryan Ford, and Paul Hudak. Maple: Simplifying SDN
programming using algorithmic policies. ACM SIG-
COMM Computer Communication Review, 43(4):87–98,
2013.

[81] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon,
Sylvia Ratnasamy, and Scott Shenker. Elastic scaling
of stateful network functions. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 299–312, 2018.

[82] Bartek Wydrowski, Robert Kleinberg, Stephen M Rum-
ble, and Aaron Archer. Load is not what you should
balance: Introducing Prequal. In 21st USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 24), pages 1285–1299, 2024.

[83] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo,
Yonatan Piasetzky, Arvind Krishnamurthy, and Ang
Chen. Runtime programmable switches. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 651–665, 2022.

[84] Lior Zeno, Dan RK Ports, Jacob Nelson, Daehyeok
Kim, Shir Landau-Feibish, Idit Keidar, Arik Rinberg,
Alon Rashelbach, Igor De-Paula, and Mark Silberstein.
SwiSh: Distributed shared state abstractions for pro-
grammable switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 171–191, 2022.

[85] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan RK Ports. Building con-
sistent transactions with inconsistent replication. ACM
Transactions on Computer Systems (TOCS), 35(4):1–37,
2018.

[86] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang,
Yongsu Zhang, Xuan Kelvin Zou, XiongChun Duan,
Peng He, Arvind Krishnamurthy, Matthew Lentz, et al.
Dissecting Overheads of Service Mesh Sidecars. In
Proceedings of the 2023 ACM Symposium on Cloud
Computing, pages 142–157, 2023.

A Additional AppNet Design

A.1 Code generation
The AppNet compiler takes in the optimized runtime config-
uration and produces platform-specific software modules as
well as deployment scripts. To handle requests for strongly
consistent state, it translates these accesses into blocking
network calls to external storage. In contrast, reads from
weakly consistent state are performed locally, and writes
are applied asynchronously. The compiler further reduces
overhead by consolidating co-located elements, effectively
removing boundaries introduced by virtualization or sandbox
approaches [61, 63]. This consolidation applies to both the
processing logic and state synchronization messages.

The generated deployment scripts configure traffic flow
for each communication edge (microservices pair) such that
sidecars are bypassed when the runtime configuration does
not place any element there. (Today, all traffic of a microser-
vice is intercepted by the sidecar, which imposes unnecessary
overhead for RPC traffic that does not require processing.)

16

A.2 Consistent Updates
Application networks evolve frequently due to policy and
workload changes (scaling). Service meshes today provide
atomic updates for individual ANF, but ensuring consistency
across a communication edge with multiple ANFs is left to
developers. This approach is vulnerable to application down-
time or policy violations [4]. For example, when migrating an
application firewall, the developer may first detach the module
on one side and then attach it on the other, potentially causing
policy violations.

AppNet ensures consistent configuration updates such that
RPCs traversing a communication edge are processed entirely
by the old configuration or the new, and never a blend of
the two. It uses a two-phase update approach [69, 83]. Each
RPC is tagged with a version number, and configurations are
updated to process only RPCs with the corresponding version.
To transition from one configuration to the next, AppNet
controller first installs the new configuration, guarded by the
next version number. Once that is done, it enables the new
configuration by stamping new RPCs with the next version
number. Finally, once all RPCs with the old version number
have completed, the old configuration is removed.

The header to support consistent upgrades adds 23 bytes to
RPCs.

B Equivalence Checking Formalization
This appendix describes equivalence checking of AppNet
in more detail. Table 3 lists all types of symbols with their
explanations.

Symbolic abstraction of an element We symbolically ab-
stract an element as a set of transfer functions in two steps. In
the first step, we convert the element into a tuple of properties
(rf,wf,rs,ws,drop,reorder,channel), where

• rf(read fields), wf(write fields), rs(read states), ws(write
states) are sets of RPC field/state names that the element
reads/modifies.

• drop,reorder are boolean values indicating whether
the element is likely to drop RPCs or reorder input RPC
stream. An element may reorder the RPC stream if it
does concurrent processes or delays RPCs by differing
amounts.

• channel is a set of auxiliary output channels in the ele-
ment. Elements such as Logging and Metrics will send
RPC records to these channels.

All of these properties are obtained by analyzing the (post-
parsing) IR of AppNet specifications.

The second step converts these properties into transfer func-
tions. Algorithm 1 illustrates this process. wf,ws,ord and dr
in the transfer functions are opaque function symbols repre-
senting the dependencies of field modification, state modifica-

Algorithm 1 Symbolic Abstraction Algorithm
Input: AppNet specification of an element
Output: A set of transfer functions for the element

Function SymbolicAbstraction(e):
(rf, wf, rs, ws, drop, reorder, channel)← get_prop-
erty_tuple(e)
TFs←{} # TFs is a set for collecting transfer functions
rv←{r̃. f : f ∈ rf}∪{s̃.v : v ∈ rs}
foreach f ∈ wf do

TFs.add(r̃. f ← wf(i,f)(rv))
end
foreach v ∈ ws do

TFs.add(s̃.v← ws(i,v)(rv∪ r̃.drops∪ r̃.reorders))
end
foreach ch ∈ channel do

TFs.add(ch← ch∪{r̃})
end
if reorder = true then

TFs.add(r̃.reorders← r̃.reorders∪{ordi(rv)})
end
if drop = true then

TFs.add(r̃.drops← r̃.drops∪{dri(rv)})
end
return TFs

tion, reordering decision, and dropping decision, respectively.
The meaning of symbol subscripts are explained in Table 3.

Symbolic execution of a chain of elements Algorithm 2
shows the process of sequentially iterating over the chain
and concatenating element-level transfer functions to obtain
chain-level transfer functions. Ffx and Svx are primitive sym-
bols representing the initial values of RPC fields and state
variables.

Comparing two chains Algorithm 3 shows how we com-
pare two chains under desired consistency level. For weak
consistency, we require the transfer functions of output RPC
and final states to be identical. For strong consistency, we also
compare the transfer functions of auxiliary channels.

Correctness Proof Two chains are equivalent if and only
if for any input RPC stream, the contents of output RPCs,
the outputs of auxiliary channels, and all RPC-related be-
haviors such as dropping, are identical. The only differences
permitted are those that could occur between two copies of
the same chain, such as the differences caused by randomness.
In our formalization, we assume that all opaque functions
additionally take an implicit seed that makes the function
deterministic, and the same seed is used for both chains un-
der comparison to eliminate randomness. We also assume
that the RPC stream is not reordered (e.g., during network
transmission—by explicitly including the network as a re-
ordering element, we can remove this assumption) unless it

17

Type Explanation Examples

Properties obtained from AppNet specifications, used for sym-
bolic abstraction

rf (read fields, a set of field names), ws (write
states, a set of state variable names), channel

Primitive Symbols symbols representing initial values of fields and
states

Ff (the initial value of RPC. f), Sv (the initial value
of state variable v)

Function Symbols
symbols representing the opaque internal logic of
elements, the parameters of which are symbolic
values that it depends on

wf(i,f)(S) (the logic of the ith element writing to
RPC. f , where S is a set of symbols the element
reads)

Dictionary A dictionary maps field name/variable name to its
value symbol. If a : b ∈ s̃, then s̃.a ≜ b.

r̃ = { f1 : Ff1 , · · · , fn : Ffn ,drops : {},reorders :
{}}.

Table 3: Symbol Explanation and Examples

Algorithm 2 Symbolic Execution Algorithm
Input: a chain configuration c = (e1, · · · ,en), i.e., a list of
AppNet specifications
Output: chain-level transfer functions of output RPC, states
and auxiliary channels

Function SymbolicExecution(c):
chainTFs←{
r̃← (f1 : Ff1 , · · · , fn : Ffn ,drops : {},reorders : {}),
s̃← (v1 : Sv1 , · · · ,vm : Svm)
}
foreach ei ∈ c do

TFs← SymbolicAbstraction(ei)
chainTFs← concatenate(chainTFs, TFs)

end
rpcTFs, stateTFs, channelTFs← split(ChainTFs)
return rpcTFs, stateTFs, channelTFs

meets elements with property reorder = true.
We need to prove that for two chains, if the algorithm pro-

duces the same transfer functions, then the two configurations
are equivalent. The proof below focuses on weak consistency,
i.e., analyzing the output RPC and states; strong consistency
just additionally checks the auxiliary channels, which follows
a similar approach.

We start by showing that if two symbolic transfer functions
are identical, then the concrete value or dropping/reordering
decisions they represent are equivalent. We prove the state-
ment by structural induction.

• Base case: primitive symbols include Ff1 , · · · ,Ffn and
Sv1 , · · · ,Svm , which represent initial values of RPC fields
and state variables. Identical primitive symbols indicate
that they represent the exact same concrete initial value,
which are equivalent.

• Inductive case: our symbolic execution system has two
kinds of compound symbol structures:

• wf/dr/ord(i,f)({r̃. f : f ∈ r f} ∪ {s̃.v : v ∈ rs}):
these three symbols represent the modified field

Algorithm 3 Equivalence Checking
Input: Two chain configurations c1,c2 and desired consis-
tency level L
Output: A boolean indicating whether c1 and c2 are
equivalent under L

rpc1,state1,channel1← SymbolicExecution(c1)
rpc2,state2,channel2← SymbolicExecution(c2)
if L = 'weak' then

return rpc1 = rpc2 and state1 = state2
else

return rpc1 = rpc2 and state1 = state2 and channel1 =
channel2

end

value that the ith element writes into the RPC, the
dropping decision, and the reordering decision, re-
spectively. Considering that the essence of RPC
processing inside an ANF is a black-box function
that maps input RPCs and states to output RPCs
and RPC-related operations, if all inner symbols
in the parenthesis are identical, which means all
the RPC fields and states the element reads are
equivalent, then the modified fields or dropping/re-
ordering decisions are also equivalent.

• ws(i,v)({r̃. f : f ∈ r f}∪{s̃.v : v ∈ rs}∪RPC.drops
∪ RPC.reorders): this symbol represents the mod-
ified value of state variables. State updates are dif-
ferent from RPC processing in that not only RPC
contents and previous state values matter, but also
whether an RPC arrives at the element and the order
of RPC stream will influence the result. Therefore,
our algorithm additionally includes the set of pre-
vious dropping/reordering decisions into the paren-
theses, and if all inner symbols are identical, then
the modified state value should also be equivalent.

Therefore, if the transfer functions of output RPC are identical,
then equivalence of single input RPC could be guaranteed.

The next step is to show why it is correct to apply analysis

18

Frontend

Ad

Checkout

Payment

Rec

Shipping

Cart

Product

Email

Redis

Currency

Figure 11: Online Boutique Microservice [36].

on single input RPC to stateful chains that receive a stream of
RPCs. Let’s consider two scenarios:

• The chain is stateless, i.e., there is no stateful element
inside the chain. In this case, RPCs will not interfere
with each other, and therefore reasoning about a stream
of input RPCs is equivalent to reasoning about each RPC
independently.

• The chain contains stateful elements. Considering that
(1) The reordering events symbols inside the transfer
functions of states are identical, which guarantees that
stateful elements see RPCs in the same order in two
configurations, and (2) The transfer functions of states,
in a whole, are identical, which means given the same
pre-states, the nth RPC will produce the same post-states
which serve as the pre-states of the (n+ 1)th RPC, we
can inductively conclude that all RPCs in the stream will
result in identical symbolic output RPCs.

Therefore, we can conclude that if the algorithm produces
identical symbolic output RPC, dropping events and modified
states, two chain configurations are equivalent.

C Additional Application Benchmark
In this section, we demonstrate AppNet’s ability to reduce
RPC processing overhead using the Online Boutique applica-
tion [36]. It consists of 11 microservices that communicate
via gRPC (Figure 11). Since it is implemented in multiple
languages (Python, C#, Java, Node.js and Go) and AppNet
supports only the Go version of gRPC, we port all services
to Go. Our experimental methodology follows the same ap-
proach as in § 6.3.

Figure 12 presents the results, showing the performance im-
provements of the LocalOpt and AppNet relative to the "Fully
Pinned" baseline. The baseline metrics (not shown) across
all chain configurations range from 14.1–19.2 milliseconds
for service time, 90.1–162.2 milliseconds for tail latency, and
106.4–163.8 virtual cores for CPU usage.

Consistent with the results from the Hotel Reservation
benchmark, the LocalOpt achieves moderate performance
gains across all metrics and chain configurations, with me-
dian reductions of 8% in service time and tail latency and 9%

in CPU usage. In contrast, AppNet delivers greater improve-
ments: under strong consistency, median reductions reach
22% for service time, 20% for tail latency, and 24% for CPU
usage. When weak consistency is applied, these gains increase
further to 36%, 37%, and 44%, respectively.

The overall improvements achieved by both the LocalOpt
and AppNet are smaller in the Online Boutique application
compared to the Hotel Reservation benchmark. This is pri-
marily due to the larger baseline application latency and CPU
usage, which reduce the relative impact of RPC processing
optimizations. Nevertheless, AppNet still provide substantial
performance benefits, demonstrating its effectiveness across
different application workloads.

D Abstraction Tax
Systems based on high-level languages sometimes pay a per-
formance tax when the generated code is not as efficient as
hand-written code. We quantify this tax for AppNet by run-
ning our generated modules against two sets of handwritten
modules. Each module is run in isolation (i.e., not as part of a
chain), and we measure the same three metrics.

The first set of handwritten modules is Envoy’s built-in
filters. Envoy has a set of built-in filters written in C++ that
users can configure to use with Envoy. Versions of all 12
filters in Table 2 are available except for encryption. Figure
13a shows how our generated EnvoyNative modules compare
to these filters. We see that the tax is low. The median increase
in latency and CPU is 1-4%, with the worst-case overhead
being 3-7%.

The second set of handwritten modules are gRPC intercep-
tors and Envoy WebAssembly filters that we wrote (because
we were not able to find usable third-party implementations.
Figure 13b presents the results. We see a similar tax to what
we saw for Envoy built-in filters.

We investigated the sources of this tax and found that sig-
nificant contributors include coarse-grained locking of shared
state and the data structures used to maintain metadata for
matching RPC messages across processing functions. We
speculate that this can be reduced with a more careful anal-
ysis of the processing logic. Nevertheless, as demonstrated
earlier, this low tax is more than compensated for by the opti-
mizations enabled by AppNet’s abstractions.

E Details of Optimization Algorithm
As the number of elements in the chain increases, the search
space for potential optimal configurations soon becomes large
and intractable. One of the possible approaches is to for-
mulate the optimization into an integer programming (IP)
problem and invoke a solver to generate solutions. However,
solver-based methods are not scalable enough and struggle
to incorporate validity checks as IP constraints. To address
these challenges, AppNet leverages a multi-start simulated an-
nealing (MSA) algorithm [79] to efficiently find high-quality
solutions for long chains. Specifically, during each cooling

19

0 20 40 60 80 100
Service Time Reduction (%)

0.00

0.25

0.50

0.75

1.00
CD

F

0 20 40 60 80 100
Tail Latency Reduction (%)

0.00

0.25

0.50

0.75

1.00

CD
F

0 20 40 60 80 100
CPU Usage Reduction (%)

0.00

0.25

0.50

0.75

1.00

CD
F

LocalOpt AppNet (Strong Consistency) AppNet (Weak Consistency)

Figure 12: Performance improvement of Online Boutique compared to NoOpt.

0 2 4 6 8
Increase (%)

0.25
0.50
0.75
1.00

CD
F

(a) Envoy built-in.

0 5
Increase (%)

0.0

0.5

1.0

CD
F

Service Time
Tail Latency
CPU Usage

(b) Hand-coded.

Figure 13: Performance of AppNet generated elements com-
pared to Envoy built-in and hand-coded elements.

5 10 15

100

102

104

50 100
Number of Elements

So
lv

in
g

Ti
m

e
(s

)

Brute Force
AppNet

(a) Solving time comparison

0.96

0.98

1.00

1.000 1.005 1.010 1.0150.00

Cost Ratio

CD
F

#element=9
#element=10
#element=11
#element=12

(b) Cost ratio CDF

Figure 14: Efficiency and optimality comparison between
multi-start simulated annealing and brute-force searching.

process, we iteratively consider valid (i.e., semantics preserv-
ing) mutations of the current solution and decide whether to
adopt the new configuration according to some probabilities
related to the cost difference and dropping temperature. Al-
gorithm 4 shows our strategy of configuration mutation. To
further mitigate the risk of local optima, we repeatedly restart
the cooling process by resetting the temperature. The algo-
rithm terminates when there’s no improvement in cost over
the last 15 cooling processes or the time budget runs out. Our
final optimization algorithm combines MSA with brute-force
searching: for chains with fewer than 10 elements, we exhaus-
tively enumerate all possible combinations of configurations
to guarantee optimality; for longer chains, we apply the MSA
heuristics to achieve near-optimal solutions efficiently.

To evaluate the efficiency and solution quality of our ap-
proach, we compare multi-start simulated annealing against
brute-force searching by randomly generating 100 specifica-
tions for each chain size ranging from 3 to 12 and recording
the solving time and final cost. Figure 14a shows the speed

Algorithm 4 Solution Mutator in Simulated Annealing
Input: The current solution
Output: A new valid solution mutated from the original one

Function SolMutation(s):
repeat

s′← s
switch coin← random(0,1) do

case 0≤ coin < 0.4:
change the position of one element in s′

case 0.4≤ coin < 0.8:
swap the positions of two elements in s′

case 0.8≤ coin≤ 1:
change the platform of one element in s′

end
until PassValidityCheck(s′);
return s’

comparison. Brute-force searching becomes computationally
prohibitive due to its factorial complexity, whereas MSA is
473x faster for 12-element chains and remains practical even
when the chain size increases to 100. Figure 14b presents the
CDF of the cost of multi-start simulated annealing relative to
brute-force searching. MSA successfully identifies the opti-
mal configuration in more than 98% of cases when the chain
size is no more than 12, and the worst-case cost increase is
lower than 1.5%.

F Details of ServiceRouter and Prequal Imple-
mentation

In this section, we describe the implementation details of
ServiceRouter and Prequal in AppNet.

ServiceRouter [70] is Meta’s global service mesh system.
We implement the routing and load balancing as described in
the paper. Specifically, it routes RPCs based on their key (for
sharded services) and uses adaptive load estimation along with
the power of two choices to balance load across service repli-
cas. The AppNet implementation consists of a control plane
component, a client-side element, and a server-side element.
The control plane component maintains the shard information
for each service and maintains an up-to-date global knowl-
edge about the load of each service replica. The client-side

20

element maintains two states: a shard map and a load map,
which store the mapping between request keys and shard repli-
cas, and replicas to their current load, respectively. For each
request, the client-side element first checks the freshness of
its local states, queries the control plane if they are stale, and
applies the power-of-two choices on the corresponding shard
replicas. Upon receiving a response, the client-side element
updates the load map using the piggybacked load information
embedded in the response. The server-side element monitors
load locally by maintaining a counter. This counter is incre-
mented when a request is received and decremented when
the application sends a response. The current load value is
embedded as an RPC header in outgoing responses

Prequal [82] is a load balancer used by YouTube and other
production systems at Google. It selects server replicas based
on estimated latency and active in-flight requests. The AppNet
implementation of Prequal also comprises three main compo-
nents: a control plane, a client-side element, and a server-side
element. The control plane actively probes and stores the
load of each replica along with its request latency for various
load levels. The client maintains a local cache of the con-
trol plane’s state. For each request, it applies the power-of-N
choices to sample a subset of replicas and retrieves their load
information from either the local cache or the control plane,
depending on the cache’s freshness. It then uses the hot-cold
lexicographic rule, as described in the paper, to select the
replica for routing the request. The server-side component
monitors the current load and maintains a mapping between
load levels and the latencies of requests processed at each
load point.

21

	Introduction
	Background
	AppNet Overview
	Programming abstractions
	Compiler
	Controller

	AppNet design
	Specification language
	Optimization
	Equivalence checking

	Implementation
	Evaluation
	Expressiveness
	RPC Processing Overhead
	Overhead reduction
	Impact of available optimization opportunities
	Impact of weak state and observation consistency

	Application performance

	Related Work
	Conclusions
	Additional AppNet Design
	Code generation
	Consistent Updates

	Equivalence Checking Formalization
	Additional Application Benchmark
	Abstraction Tax
	Details of Optimization Algorithm
	Details of ServiceRouter and Prequal Implementation

